

Ovak Technologies

2016

FTDI API for Serial

Communication Protocols

(SPI, I2C)
User Manual

2

Contents
1. Introduction ... 4

1.1. Definitions and Acronyms .. 4

1.2. The Purpose .. 4

1.3. Overview ... 4

2. Transfer Library and License Files to NI Linux Real-Time ... 5

3. How to use FTDI API for Serial Communication Protocols ... 5

3.1. Open.vi .. 6

3.2. Write-Read.vi .. 7

3.3. Close.vi ... 8

3.4. D2XX Driver .. 8

4. FT4222H Programming Interface (API) .. 9

4.1. FT4222 General Functions.. 9

4.1.1. Open and Close ... 9

4.1.2. Un-initialize .. 9

4.1.3. Set Clock ... 9

4.1.4. Get Clock .. 10

4.1.5. Set Suspend Out .. 10

4.1.6. Set Wake up/Interrupt ... 10

4.1.7. Set Interrupt Trigger Condition ... 10

4.1.8. Get Max Transfer Size .. 10

4.1.9. Set Event Notification ... 10

4.2. SPI Master Functions .. 11

4.2.1. SPI Master Init .. 11

4.2.2. SPI Master Set Lines ... 12

4.2.3. SPI Master Single Read .. 12

4.2.4. SPI Master Single Write ... 12

4.2.5. SPI Master Single Read and Write.. 12

4.2.6. SPI Master Multi Read and Write ... 13

4.3. SPI Slave Functions .. 13

4.3.1. SPI Slave Init .. 13

4.3.2. SPI Slave Get Rx Status .. 13

4.3.3. SPI Slave Read .. 14

4.3.4. SPI Slave Write ... 14

4.4. SPI General Functions .. 14

4.4.1. SPI Reset Transaction ... 14

4.4.2. SPI Reset ... 14

4.4.3. SPI Set Driving Strength ... 14

3

4.5. I2C Master Functions .. 15

4.5.1. I2C Master Init .. 15

4.5.2. I2C Master Read ... 15

4.5.3. I2C Master Write .. 15

4.5.4. I2C Master Write Extension ... 15

4.5.5. I2C Master Read Extension .. 16

4.5.6. I2C Master GetStatus .. 16

4.5.7. I2C Master Reset ... 16

4.6. I2C Slave Functions .. 16

4.6.1. I2C Slave Init .. 16

4.6.2. I2C Slave Get Address .. 16

4.6.3. I2C Slave Set Address... 17

4.6.4. I2C Slave Get Rx Status .. 17

4.6.5. I2C Slave Read.. 17

4.6.6. I2C Slave Write ... 17

4.6.7. I2C Slave Reset ... 17

4.7. GPIO Functions .. 18

4.7.1. GPIO Init ... 18

4.7.2. GPIO Read .. 18

4.7.3. GPIO Write ... 18

4.7.4. GPIO Set Input Trigger ... 19

4.7.5. GPIO Get Trigger Status ... 19

4.7.6. GPIO Read Trigger Queue .. 19

5. Examples .. 19

5.1. SPI – Single Slave Example.. 19

5.2. SPI – Multiple Slaves Example Circuit .. 20

5.3. FT4222 SPI Master Example .. 21

5.4. FT4222 SPI Slave Example .. 22

5.5. I2C – Single Slave Example Circuit ... 22

5.6. I2C – Multiple Slaves ... 23

5.7. FT4222 I2C Master Example .. 23

5.8. FT4222 I2C Slave Example .. 23

6. System Requirements ... 24

7. Suggested connections... 25

8. Support Information ... 25

4

1. Introduction

1.1. Definitions and Acronyms
MPSSE – Multi-Protocol Synchronous Serial Engine

RAM – Random-Access Memory

CS – Chip Select

GPIO – General-Purpose input/output

SPI – Serial Peripheral Interface

CLK – Clock Frequency

MOSI – Master Output, Slave Input

1.2. The Purpose

The purpose of this manual is to outline the basics in configuring the MPSSE for use

and demonstrate some of the available modes of operation.

1.3. Overview

This API provides high-level building blocks to communicate with FTDI Multi-

Protocol Synchronous Serial Engine based on D2XX and FT4222H drivers.

The API enables users to write applications and communicate with the FTDI Chip’s

I2C/SPI/JTAG/GPIO devices without needing to understand the low-level D2XX and FT4222

drivers and theirs command sets. MPSSE provides a flexible means of interfacing

synchronous serial devices to a USB port. Being “Multi-Protocol”, the MPSSE allows

communication with many different types of synchronous devices; the most popular are SPI

and I2C. Data formatting and clock synchronization can be configured in a variety of ways to

satisfy almost any requirement. In addition to the serial data pins, additional GPIO signals are

available. The API support Windows and NI Linux RT. The Linux version of LibFT4222 has

D2XX built-in.

The FT4222H supports 4 operation modes to allow various I2C/SPI devices to be connected to

USB bus. The attachable device configuration for each mode is listed below:

Mode 0 (2 USB interfaces):

SPI master, SPI slave, I2C master, or I2C slave device

• GPIO device

• Mode 1 (4 USB interfaces):

• SPI master connects up to 3 SPI slave devices

• GPIO device

• Mode 2 (4 USB interfaces):

• SPI master connects up to 4 SPI slave devices

• Mode 3 (1 USB interface):

• SPI master, SPI slave, I2C master, or I2C slave device

In mode 0 and 3 the connected device can be a SPI/I2C master or slave, depending on how an

application developer initializes the FT4222H chip. Mode 1 and mode 2 are designed to

connect to multiple SPI slave devices.

The FT4222H can be configured with up to 4 GPIO pins for user applications in mode 0 and

mode 1, but each pin is multiplexed with interrupt/suspend out/SPI slave select/I2C functions

as listed below:

• gpio0 / ss1o / scl

5

• gpio1 / ss2o / sda

• gpio2 / ss3o / suspend out

• gpio3 / wakeup/intr

If the FT4222H is initialized as I2C device, with pins as mentioned above, the pins of gpio0

and gpio1 will be switched to scl and sda, and cannot be used as GPIO.

The pin for gpio2 is by default configured as suspend out, and the pin for gpio3 is configured

as wakeup/intr. Only these configured GPIO pins can support GPIO read/set operation

through the corresponding endpoint.

2. Transfer Library and License Files to NI Linux Real-Time
There are many ways of transferring .so and license files to NI Linux RT. For example SSH,

WebDAV and FileZilla.

The NI Linux Real-Time OS offers full Linux shell support so you can perform complex

administrative tasks to manage real-time targets more easily. To access the shell, you need a

terminal client. If you use Windows 7 and later, then PuTTY is a popular and free client.

In addition to a terminal client, you must select the Enable Secure Shell Server (sshd) option

on the real-time target running the NI Linux Real-Time OS. You can use NI Measurement &

Automation Explorer (MAX).

NI real-time targets support WebDAV file transfer. WebDAV is an industry-standard protocol

that is based on top of HTTP. You can easily secure it to transfer libFT4222.so and

FTDI_license.ini files. WebDAV is the default file transfer mechanism for real-time targets

running NI Linux Real-Time.

After installing package you can find the libFT4222.so library in C:\Program Files

(x86)\National Instruments\LabVIEW 2013\vi.lib\Ovak Technologies\FTDI API for

LabVIEW\Supporting files path. We recommend to transfer these library and

FTDI_license.ini files to /usr/local/lib/ then reboot the controller. For deployment license you

need target's Serial Number.

3. How to use FTDI API for Serial Communication Protocols
FTDI API is installed under “Instrument I/O” palette. The palette consists of high-level

MPSSE Polymorphic VIs “D2XX Drivers” and “FT4222H library” sub palette with low-

level VIs for D2XX and FT4222H driver call.

Figure 1 FTDI Driver API for Serial Communication Protocol (SPI, I2C)

6

3.1. Open.vi

Use “Open.vi” to configure the FTDI MPSSE for SPI I2C or JTAG protocols.

Just select Device ->Serial Protocol->Connection from Polymorphic drop-down menu.

Note: The MPSSE always acts as a master controller for the selected synchronous

interface.

Figure 2 FT2232H_SPI

Figure 3 Configure SPI.vi

This VI configures the FTDI MPSSE for SPI protocol. Sets the SPI CLK Frequency, SPI

Mode (only Mod0 and Mod2 are supported) and CS pins for slave device. The MPSSE can

be placed in loop-back mode for diagnostic purposes (data transmitted out of the DO pin,

is also internally connected to the DI pin).

Note: The MPSSE always acts as a master controller for the selected synchronous interface.

Figure 4 SPI - Multi Slaves.vi

This VI configures the FTDI MPSSE for SPI protocol. Sets the SPI CLK Frequency, SPI

Mode (only Mod0 and Mod2 are supported) and CS pins for slave devices. The MPSSE can

be placed in loop-back mode for diagnostic purposes (data is transmitted out of the DO pin,

is also internally connected to the DI pin).

This VI should be used when multiple slaves are connected to the bus.

Figure 5 Configure I2C.vi

This VI configures the FTDI MPSSE for I2C protocol. It sets the I2C CLK Frequency.

Registers the I2C Slave Device Address (7-bit address) interconnected to the bus.

7

Figure 6 Configure I2C - Multi Slaves.vi

This VI configures the FTDI Multi-Protocol Synchronous Serial Engine (MPSSE) for I2C

protocol. It sets the I2C CLK Frequency. Registers the I2C Slave Device Address (7-bit

address) interconnected to the bus.

This VI should be used when multiple slaves are connected to the bus.

3.2. Write-Read.vi

Performs Write/Read operations according to serial protocol you specify. The instances of

this polymorphic VI specify the data format to operate with, as well as a single or multiple

slaves are used on bus topology.

Figure 7 SPI_Single Slave

Figure 8 SPI_SingleSlave_ByteData.vi

This VI performs a full-duplex transfer of data with the slave device. In this case, data

("Write Data" bytes) is both sent to the slave and received from the slave at once.

Figure 9 SPI_MultipleSlaves_ByteData.vi

This VI performs a full-duplex transfer of data with the slave devices. In this action, data

("Write Data" bytes) is both sent to the slave and received from the slave at once.

This VI should be used when multiple slaves are connected to the bus.

Figure 10 SPI_MultipleSlaves_BitData.vi

This VI performs a full-duplex transfer of data with the slave devices. In this action, data

("Bit Data Out" bits) is both sent to the slave and received from the slave at once.

This VI should be used when multiple slaves are connected to the bus.

8

Figure 11 SPI_ SingleSlave_BitData.vi

This VI performs a full-duplex transfer of data with the slave device. In this action, data ("Bit

Data Out" bits) is both sent to the slave and received from the slave at once.

This VI should be used when multiple slaves are connected to the bus.

Figure 12 I2C_MultipleSlaves_ReadWrite.vi

This VI performs Combined Read and Write Operations on Multiple I2C Slave Devices. It

reads “Bytes to Read” amount of data from Slave Devices in a chain and sends “Write Data”

to the each I2C Slave Devices.

This VI should be used when multiple slaves are connected to the bus.

Figure 13 I2C_SingleSlave_ReadWrite.vi

This VI performs Combined Read and Write Operations on an I2C Slave Device. It reads a

"Bytes to Read" amount of data from the Slave Device. After it sends a "Write Data" to the

I2C Slave Device.

3.3. Close.vi
Use this VI to close opened session.

Figure 14 Close.vi

3.4. D2XX Driver
D2XX Driver” palette is composed of a low-level VIs for D2XX driver call.

Figure 15 D2XX

9

4. FT4222H Programming Interface (API)
LibFT4222 supports SPI, I2C and GPIO communication using high-level APIs. In addition, it

provides chip configuration APIs, such as FT4222_SetClock.

After calling FT_Open, the FT4222H is required to be initialized by one of the following initial

functions:

• FT4222_SPIMaster_Init

• FT4222_SPISlave_Init

• FT4222_I2CMaster_Init

• FT4222_I2CSlave_Init

• FT4222_GPIO_Init

The initialization functions help developers to switch the FT4222H into a specific mode. At

the end of the application, FT4222_Uninitialize should be called to release allocated resources,

before calling FT_Close. All the APIs return FT4222_STATUS, which extends FT_STATUS

that is defined in the D2XX driver. FT4222_STATUS defines additional values to report

FT4222H specific status.

4.1. FT4222 General Functions
The functions listed in this section are system-wise configuration functions.

4.1.1. Open and Close

An application of LibFT4222 should open the device and get a handle for subsequent accesses

by calling FT_Open or FT_OpenEx. Both are D2XX API. Please note that the FT4222H

assigns different functions to different interfaces. For example, under mode 0, interface A is

assigned as SPI or I2C interface, and interface B is assigned as GPIO interface.

After finishing using the device, FT_Close should be called to release the device.

4.1.2. Un-initialize

Release allocated resources. FT4222_Uninitialize should be called before calling FT_Close.

Figure 16 UnInitialize

4.1.3. Set Clock

Set the system clock rate. The FT4222H supports 4 clock rates: 80MHz, 60MHz, 48MHz, or

24MHz. By default, the FT4222H runs at 60MHz clock rate.

Figure 17 SetClock

10

4.1.4. Get Clock

Get the current system clock rate.

Figure 18 GetClock

4.1.5. Set Suspend Out

Enable or disable, suspend out, which will emit a signal when FT4222H enters suspend mode.

Please note that the suspend-out pin is not available under mode 2.

Figure 19 SetSuspendOut

4.1.6. Set Wake up/Interrupt

Enable or disable wakeup/interrupt.

Figure 20 SetWakeUP/Interrupt

4.1.7. Set Interrupt Trigger Condition

Set trigger condition for the pin wakeup/interrupt.

Figure 21 SetInterruptTrigger

4.1.8. Get Max Transfer Size

This function returns the maximum packet size in a transaction. It will be affected by different

bus speeds, chip modes, and functions.

Figure 22 GetMaxTransferSize

4.1.9. Set Event Notification

Sets conditions for event notification.

An application can use this function to set up conditions which allow a thread to block until

one of the conditions is met. Typically, an application will create an event, call this function,

and then block on the event. When the conditions are met, the event is set, and the application

thread is unblocked. Usually, the event is set to notify the application to check the condition.

The application needs to check the condition again before it turns to handle the condition.

11

Figure 23 SetEventNotification

4.2. SPI Master Functions
The FT4222H can be initialized as an SPI master under all modes.

As SPI master, it allows data transfers in three types of bit width:

• Single SPI transfer – Standard data transfer format – data is read and written

simultaneously.

• DUAL SPI Transfer/Receive – Data is transferred out or received in on 2 SPI lines

simultaneously.

• QUAD SPI Transfer/Receive – Data is transferred out or received in on 4 SPI lines

simultaneously.

4.2.1. SPI Master Init
Initialize the FT4222H as an SPI master.

In order to support various types of SPI slave devices, the FT4222H SPI master is configurable

using the following parameters:

• IO lines: SPI transmission lines. The FT4222H SPI supports single, dual, or quad

transmission mode. An application may override this initial selection dynamically using

FT4222_SPIMaster_SetLines. For example, commands might be sent in single mode

but data transferred in dual or quad mode.

• Clock divider: SPI clock rate is subject to system clock. The FT4222H SPI clock could

be 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, or 1/512 system clock rate.

• Clock polarity: Active high or active low.

• Clock phase: Data is sampled on the leading (first) or trailing (second) clock edge.

Slave selection output pins: Select slave devices by ss0o, ss1o, ss2o, ss3o. The FT4222H

supports active low only.

Please note that the FT4222H has only one SPI controller. Though the FT4222H provides up

to 4 interfaces for connecting up to 4 SPI slave devices and 4 slave devices share the same SPI

data bus: MOSI, MISO, and SCK. A user can decide how to map the 4 interfaces to the 4 SS

signals (ss0o, ss1o, ss2o and ss3o) by the ssoMap parameter. For example:

a. interface 0 for ss0o and ss1o

b. interface 1 for ss2o

c. interface 2 for ss3o

d. interface 3 is not used

The 4 interfaces cannot work simultaneously because there is only one data bus.

Figure 24 SPIMasterInit

12

4.2.2. SPI Master Set Lines
Switch the FT4222H SPI master to single, dual, or quad mode. This overrides the mode passed

to FT4222_SPIMaster_init. This might be needed if a device accepts commands in single mode

but data transfer should use dual or quad mode.

Figure 25 SPIMasterSetLines

4.2.3. SPI Master Single Read
Under SPI single mode, read data from SPI slave.

Figure 26 SPIMasterSingleRread

4.2.4. SPI Master Single Write
Under SPI single mode, write data to SPI slave.

Figure 27 SPIMasterSingleWrite

4.2.5. SPI Master Single Read and Write
Under SPI single mode, full-duplex write data to and read data from SPI slave. The standard

SPI protocol simultaneously sends data onto the MOSI data line and receives data from the

MISO line.

Figure 28 SPIMasterSingleReadWrite

13

4.2.6. SPI Master Multi Read and Write
Under SPI dual or quad mode, write data to and read data from SPI slave. The dual-SPI protocol

supported by the FT4222H SPI master is a mixed protocol initiated with a single write

transmission, which may be an SPI command and dummy cycles, and followed by dual-write

and dual-read transmission that use 2 signals in parallel for the data. All three parts of the

protocol are optional. For example, developers can ignore the multi-read part by setting

multiReadBytes=0.

The Quad-SPI protocol supported by the FT4222H SPI master is the same as the dual-protocol.

It is a mixed protocol initiated with a single write transmission and followed by quad-write and

quad-read transmission that use 4 signals in parallel for the data.

Figure 29 SPIMasterMultiReadWrite

4.3. SPI Slave Functions
The FT4222H can be initialized as an SPI slave under mode 0 to mode 3. As SPI slave, the

FT4222H supports only the standard single SPI transfer.

A USB-SPI bridge usually faces the challenge that USB cannot guarantee the throughput for

each endpoint, but SPI requires data transmission at a steady rate. It is highly possible when an

SPI master starts to request data from a USB-SPI slave bridge device, the data has not arrived

from the USB host side yet. In addition, SPI does not have a standard protocol to allow the

master side to check the status of the slave side. The protocol is usually provided by an SPI

slave device on its own, which makes the SPI master device communicate with the slave device

by its specified commands.

The FT4222H and LibFT4222 design have implemented an SPI slave protocol which must be

used to handle the integrity of data transmission.

It starts with Sync word: 0x5A, and followed by a Command field:

4.3.1. SPI Slave Init

Initializes the FT4222H as SPI slave

Figure 30 SPISlaveInit

4.3.2. SPI Slave Get Rx Status

Gets number of bytes in the receive queue.

Figure 31 SPISlaveInit

14

4.3.3. SPI Slave Read

Reads data from the receive queue of the SPI slave device.

Figure 32 SPISlaveRead

4.3.4. SPI Slave Write

Writes data to the transmits queue of the SPI slave device.

Figure 33 SPISlaveWrite

4.4. SPI General Functions

4.4.1. SPI Reset Transaction
Resets the SPI transaction.

Figure 34 SPIResetTransaction

4.4.2. SPI Reset
Resets the SPI master or slave device.

Figure 35 SPIReset

4.4.3. SPI Set Driving Strength
For the FT4222H SPI, sets the driving strength of clk, io, and sso pins.

Figure 36 SPISetDrivingStrength

15

4.5. I2C Master Functions
I2C (Inter Integrated Circuit) is a multi-master serial bus invented by Philips. I2C uses two bi-

directional open-drain wires called serial data (SDA) and serial clock (SCL). Common I²C bus

speeds are the 100 kbit/s standard mode (SM), 400 kbit/s fast mode (FM), 1 Mbit/s Fast mode

plus (FM+), and 3.4 Mbit/s High Speed mode (HS)

The FT4222H device can be initialized as either an I2C master or I2C slave under mode 0

and mode 3. Here is a brief overview of FT4222H I2C features:

• Fully compatible to I2C v2.1 and v3 specification.

• 7-bit address support.

• Support 4 speed configurations: 100KHz(SM), 400KHz(FM), 1MHz(FM+), and

3.4MHz(HS).

• Clock stretching support in both master and slave mode.

4.5.1. I2C Master Init

Initializes the FT4222H as an I2C master with the requested I2C speed.

Figure 37 I2CMasterInit

4.5.2. I2C Master Read

Reads data from the specified I2C slave device with START and STOP conditions.

Figure 38 I2CMasterRead

4.5.3. I2C Master Write

Writes data to the specified I2C slave device with START and STOP conditions.

Figure 39 I2CMasterWrite

4.5.4. I2C Master Write Extension

Reads data from the specified I2C slave device with the specified I2C condition.

Figure 40 I2CMasterReadEx

16

4.5.5. I2C Master Read Extension

Reads data from the specified I2C slave device with the specified I2C condition.

Figure 41 I2CMasterReadEx

4.5.6. I2C Master GetStatus

Reads the status of the I2C master controller. This can be used to poll a slave until its write-

cycle is complete.

Figure 42 I2CMasterGetStatus

4.5.7. I2C Master Reset

Resets the I2C master device.

If the I2C bus encounters errors or works abnormally, this function will reset the I2C device.

It is not necessary to call I2CMaster_Init again after calling this reset function.

Figure 43 I2CMasterReset

4.6. I2C Slave Functions
The FT4222H device can be initialized as an I2C slave under mode 0 and mode 3. It

conforms to v2.1 and v3.0 of the I2C specification and supports all the transmission modes:

Standard, Fast, Fast-plus and High Speed.

When the I2C slave receives data from the I2C bus, it will keep the data in its internal receive

buffer (256 bytes), and then send the data to the USB host through IN packets.

When data is requested by an I2C master, data will be moved from an OUT packet to the

transmit register directly.

4.6.1. I2C Slave Init

Initializes FT4222H as I2C slave.

Figure 44 I2CSlaveInit

4.6.2. I2C Slave Get Address

Gets the address of the I2C slave device.

Figure 45 I2CSlaveGetAddress

17

4.6.3. I2C Slave Set Address

Sets the address of the I2C slave device.

Figure 46 I2CSlaveSetAddress

4.6.4. I2C Slave Get Rx Status

Gets number of bytes in the receive queue.

Figure 47 I2CSlaveGetRxStatus

4.6.5. I2C Slave Read

Reads data from the buffer of the I2C slave device.

Figure 48 I2CSlaveRead

4.6.6. I2C Slave Write

Writes data to the buffer of I2C slave device.

Figure 49 I2CSlaveWrite

4.6.7. I2C Slave Reset

Resets the I2C slave device.

Figure 50 I2CSlaveReset

18

4.7. GPIO Functions
The FT4222H contains 4 GPIO. When the USB GPIO interface is supported, chip mode 0 and

mode 1, LibFT4222 helps application developers to control GPIO directly. However, each

GPIO pin is multiplexed with interrupt/suspend out/SPI slave select/I2C functions as listed

below:

• gpio0 / ss1o / scl

• gpio1 / ss2o / sda

• gpio2 / ss3o / suspend out

• gpio3 / wakeup/intr

The number of GPIO pins available depends on the mode of the chip. For example, if the

FT4222H is initialized as an I2C device, as shown above, the pins of gpio0 and gpio1 will be

switched to scl and sda, and cannot be used as GPIO. If suspend out and remote wakeup are

enabled gpio2 and gpio3 cannot be used as GPIO.

The FT4222H supports GPIO on the second USB interface in mode 0 or on the fourth interface

in mode 2 (Please refer table 2.1 for chip mode and interface).

4.7.1. GPIO Init

Initializes the GPIO interface of the FT4222H.

Please note the GPIO interface is available on the 2nd USB interface in mode 0 or on the 4th

USB interface in mode 1.

Figure 51 GPIOInit

4.7.2. GPIO Read

Reads the value from the specified GPIO pin.

Figure 52 GPIORead

4.7.3. GPIO Write

Writes value to the specified GPIO pin.

Figure 53 GPIOWrite

19

4.7.4. GPIO Set Input Trigger

Set software trigger conditions on the specified GPIO pin.

This function allows developers to monitor value changes of the GPIO pins. Values that satisfy

the trigger condition will be stored in a queue. For example, if GPIO_TRIGGER_RISING is

set on GPIO0, and GPIO0 then changes value from 0 to 1, the event GPIO_TRIGGER_RISING

will be recorded into the queue. Developers can query the queue status by

FT4222_GPIO_GetTriggerStatus, and FT4222_GPIO_ReadTriggerQueue.

Figure 54 GPIOSetInputTriggers

4.7.5. GPIO Get Trigger Status

Gets the size of trigger event queue.

Figure 55 GPIOGetTriggerStatus

4.7.6. GPIO Read Trigger Queue

Gets events are recorded in the trigger event queue. Trigger conditions are set by a call to

FT4222_GPIO_SetInputTrigger. After calling this function, all events will be removed from

the event queue.

Figure 56 GPIOReadTriggerQueue

5. Examples

The package installs an example VIs into the Example Finder.

In order to open VIs using the NI Example Finder, please select "Browse according to

Directory Structure" and navigate to the “Ovak Technologies” folder.

5.1. SPI – Single Slave Example

Figure 57 SPI - Single Slave Example

20

With a single SPI slave device, it is connected with a 1:1 relationship between signals. Some

SPI devices do not have both data in and data out signals. For example an analogue to digital

converter may not have a MOSI data input, and a digital to analogue converter may not have

a MISO data output. The signals on the FTx232D/H chips have internal pull-ups, so they

may be left unconnected if they are not used. The CS signal is used to enable the slave device’s

interface. With only one device, it may be acceptable to tie the chip select to always-active

state.

Figure 58 SPI Single Slave Example

“SPI Single Slave” example VI implements a Single Slave SPI bus connection. It

performs a full-duplex transfer of data with the slave device. Data (an array of bytes) is

both sent to the slave and received from the slave at once.

5.2. SPI – Multiple Slaves Example Circuit

Figure 59 SPI - Multiple Slaves Example Circuit

21

Multiple SPI slaves share data in, data out and clock signals; however, each requires a

unique CS signal. Any of the available GPIO signals, in addition to the MPSSE CS signal

can be used as additional chip selects. In this case only one slave device can be active. The

application program must keep track of which SPI slave device is enabled. As with the

single-slave connection, unused DIO signals can be left unconnected.

Figure 60 SPI Multiple Slaves Example

“SPI Multiple Slaves” example VI implements a Multiple Slave SPI bus connection. It

performs a full-duplex transfer of data with the slave devices. Data is both sent to the slave

and received from the slave at once.

For applications those have uncommon register sizes (not a multiple of 8 bits), “Bit Data”

mode can be selected from “Write-Read.vi” Polymorphic VI’s drop-down menu.

5.3. FT4222 SPI Master Example
Initializes device’s clock, mode, and strengths. Builds buffers, sends to SPI Slave and reads

received buffers and uninitializes.

Figure 61 FT4222 SPI Master Example

22

5.4. FT4222 SPI Slave Example
Initializes device. When buffer is received it reads and displays. Then it uninitializes and closes

all references.

Figure 62 FT4222 SPI slave Example

5.5. I2C – Single Slave Example Circuit

Figure 63 I2C - Single Slave Example Circuit

I2C is a bidirectional, half-duplex communication scheme. Although the full specification

allows for multiple-masters, the MPSSE can only interface with I2C slave devices. The I2C

interface can be implemented with the connection shown in Figure above In addition, the

application software will need to include steps to change the direction of the MPSSE DO signal

in order to eliminate any bus contention.

Figure 64 I2C Single Slave Example

“I2C Single Slave” example VI implements a combined write and read operations in a single

slave I2C bus configuration.

23

5.6. I2C – Multiple Slaves

As an extension of the single-slave connection above, multiple I2C slave devices can be

connected in parallel. As before, only I2C slave devices can be used and the MPSSE DO

signal will require changes in direction to eliminate bus contention.

Figure 65 I2C Multiple Slaves

“I2C Single Slave” example VI implements a combined write and read operations in

multiple slaves I2C bus configuration.

5.7. FT4222 I2C Master Example
Opens connection to I2C slave and initializes master. Sends buffer to I2C slave. Reads buffer

from I2C slave, uninitializes and closes connection.

Figure 66 I2C Master Example

5.8. FT4222 I2C Slave Example
Opens connection port, initializes slave and sets slave address. Get Rx Status for reading

received buffer. Reads received buffer and sends received data to master. Unitializes slave and

close connection.

24

Figure 67 I2C Slave Example

6. System Requirements
FTDI API for Serial Communication Protocols has the following system

requirements:

• LabVIEW 2015 Base, Full, or Professional Development System or later (32-bit or

64- bit)

• At least 250 MB of disk space

• 1 GB of RAM

FTDI API for Serial Communication Protocols supports the following operating

systems:

• Windows 10 (32-bit or 64-bit)

• Windows 8 (32-bit or 64-bit)

• Windows 7 (32-bit or 64-bit), including the Starter Edition (32-bit)

• NI Linux RT

Use of the MPSSE requires installed components, both software and

hardware:

• FTDI FT – series device with the MPSSE – At the time of publication,

FTDI manufactures three devices with the MPSSE block:

o FT2232D – USB 2.0 Full-Speed Dual UART/FIFO with a single MPSSE

(6Mbps, maximum)

o FT2232H – USB 2.0 Hi-Speed Dual UART/FIFO with two MPSSEs

(30Mbps each, maximum)

o FT4232H – USB 2.0 Hi-Speed Quad UART with two MPSSEs (30Mbps

each, maximum)

• FTDI D2XX Device Drivers

o The latest D2XX device drivers are required. Multiple operating

systems are supported.

• See http://ftdichip.com/Drivers/D2XX.htm for the latest downloads. Installation

guides for various operating systems are available on the FTDI Website.

• FTDI LibFT4222H.

The latest LibFT4222 library are required. Multiple operating systems

are supported.

http://ftdichip.com/Drivers/D2XX.htm

25

• Documentation

o Datasheet for the FTDI FT-series device with the MPSSE

o D2XX Programmers Guide

o AN_108 Command Processor for MPSSE and MCU Host Bus Emulation

Modes

7. Suggested connections
Each type of interface has some unique circuitry requirements. With such a diverse

selection of peripheral devices, not every interface can be covered here. The

implementations below ill serve as a starting point for each popular interfaces.

For the FTDI USB Hi-Speed devices (FT2232H and FT4232H), the I/O interface operates at

3.3V. The pins are 5V-tolerant, so it is possible to directly connect 5V devices to the

interface. For the FTDI USB Full-Speed device (FT2232D), the I/O interface operates at

the voltage applied to VCCIO.

Note: Care should be taken to review all datasheets for the devices to

ensure I/O threshold and maximum voltages are met.

8. Support Information
For technical support, please, contact Ovak Technologies at:

Phone: + 374 10 21-97-68

Email: support@ovaktechnologies.com

Web: www.ovaktechnologies.com

mailto:support@ovaktechnologies.com
http://www.ovaktechnologies.com/

