ilver
AoOvak s,
tec h no Iogiesm Embedded Control Specialty

FTDI API for Serial
Communication Protocols
(SPI, 12C)

User Manual

FTDI Chip Your Custom Design

Ovak Technologies
2016

Contents

1.

2.
3.

(oo [o o] o O P 4
1.1 Definitions and ACIONYMSccecviiiiecierieeeerieseerestee e steseesae s e ssaestesreessesseessesteessesesseessessensees 4
L2, TRE PUIPOSE ..ottt ettt ettt et s e et e s et e s be e besteess e besseessesbeessesteessensessaensessenneas 4
IR TR © YT VT SR 4

Transfer Library and License Files to NI Linux Real-Time.........ccccocveninineniieinencnenenne 5

How to use FTDI API for Serial Communication Protocols...........ccoccevvvevieiiniecenenceceseens 5
K T0 I © T T=1 RV TR 6
3.2, WIIB-REAU VI ittt sttt b e bbbt et et e st saeebeseenaan 7
K0 R O [0 17 SR 8
KT B 1 O QI 1 1/ SR 8
4. FT4222H Programming INterface (AP ...ttt 9
4.1, FT4222 General FUNCHIONS.ccvoiririniiriesiesieie ettt st st sb et se s saeseennas 9

S R @ o 1= T 13 To [O [- OO RU SRS 9

4.1.2. UN=INITTAIIZE .ottt see et et e se e re e ensesreennens 9

4.1.3. ST O [0t TSP 9

S € T 1 [oo3 OSSR 10

4,15, SEtSUSPENT OUL....cuiceeiiieiiereiieeete ettt ettt e et e st e et e s be s e steebaesbesreesaenbesrnensesreennas 10

4.1.6. Set WakKe UP/INTEITUPE ..ottt sttt 10

4.1.7. Set Interrupt Trigger CONAITION......c.cocveirireririerieeeeeeer e e 10

4.1.8. Get MaX TTANSTEN SIZE ...eveeieeieceieieee ettt reesaesresneens 10

4.1.9. Set EVENt NOUTICATIONooviriiieieeeeeeree e 10
4.2, SPIMASLEr FUNCLIONScuiieieiieiietieiesieste ettt ettt st sttt sesbeste st e sae e e e eseeseesesseseens 11
421, SPIMASTEE INIT.c.eiiiiiiiiiieiciee ettt sttt ettt be b e 11
4.2.2. SPIMASTEr SEE LINES....cuiieiieiieieeieriest ettt ettt st be e 12
4.2.3. SPIMaSter SINQGIE REAcc.eoveeiiciieeeeeeeeteee ettt st st eanas 12
4,24, SPIMaSLEr SINGIE WL ...eeeviieeeiececee ettt ettt st et saeeae s beennas 12
4.25. SPI Master Single Read and WILE........coeveiiriecerecieie et 12
4.2.6. SPI Master Multi Read and WITE........c.coveieiriririeriesierieteeee st 13
4.3, SPISIAVE FUNCLIONS ..c.eetiieiieiieiteieeiesie ettt ettt sttt sbe b e 13

4,31, SPISIAVE INIT oottt be e sae e 13

4.3.2. SPI SIaVe Get RX STALUS.....ceeieieieieeteeete ettt ettt ae e eneens 13

4.3.3. SPISIAVE REAG.....c.eiueieiitiiiieieee ettt sttt 14

4,34, SPISIAVE WITE...ceiiieeiieestet ettt sttt be e ebe e 14
4.4, SPI GENEral FUNCLIONSoouiiieiiieeeieee ettt ettt sttt eeesneeneas 14
4.4.1. SPI RESEE TIANSACTION ...ttt ettt sttt st eeesaeeeeseeeneens 14
442 SPIRESEL ...ttt ettt bbb st et b e e bt e et st eeateeeean 14
4.4.3. SPI Set Driving StreNgth.....cc.oceecieciceeecees ettt 14

4.5, 12C MaASTEI FUNCHIONS. ...ctiieieiieiietiriesie sttt sttt ettt s be sttt sae b sae e 15
4.5.1. I2C MASEEE INHT.c.eiieiieiieiieeetcr ettt sttt be b e nes 15
45.2. D OV T (= g - Vo ST 15
45.3. D O YT (= 4 | - SR P 15
454, 12C Master Write EXIENSIONocvivieieieieieeicresieseie et 15
4.5.5. 12C Master Read EXIENSIONc.ocvivveieieieieeiiriesieste ettt et 16
4.5.6. 12C MASTEN GEESTALUSeeeueeeieeteestterte ettt sttt ettt et st st st et be e 16
45.7. 12C MASTEE RESEL... ettt ettt et ettt st e st st s e b e e 16

4.6, 12C SIAVE FUNCHIONScciiiieieieeeeiese ettt sttt e e st eaesteeneensesneensesneenees 16
4.6.1. I2C SIAVE TNIT .ottt st sttt seenas 16
4.6.2. I2C SIAVE GEE AUUIESS......eovirtirtiieieieieeee ettt st sttt be e nas 16
4.6.3. [2C SIAVE SOt AGUIESS. .. .ecveeeeeeieeieiesieee sttt ste sttt eeste st et e tesseessesteeseensesseensesseenees 17
4.6.4. I2C SIaVE GEL RX STALUS.....ccveieieeieiesieeiesieeteste ettt saeste et besreessessesnnesesseennas 17
4.6.5. I2C SIAVE REAM.......ceeiieiieiieieiestese ettt sttt ne e seenas 17
4.6.6. I2C SIAVE W ..ottt st ae s e nas 17
4.6.7. [2C SIAVE RESEL.....eeieeieiieetete sttt ettt sa e s te st e s e steeseensesseesesneeneas 17

O R €] = (@ I ¥ 0Tt T PP 18
A.7.1. GPIO INITeeiiiiitiiciiee ettt sttt a et a et s esessesesseseebeneas 18
472, GPIO REAU ..ottt ettt ettt et e te s s e sseneesenenseneas 18
A.7.3. GPIO WL ottt sttt ettt se s s e saenessenensenens 18
474, GPIO Set INPUE TIIGGET . .evitieeieiieiieieete ettt sttt ettt sbe sttt ebe e sne e 19
4.7.5. GPIO Get Trigger STAUS.....ccvevieieriereeiesteseestee e ete e eeeeste st eaesteeseessesreessessesssessessesnes 19
4.7.6. GPIO Read Trigger QUEUE......cecieiieeteeieeteeteete et etesteeeeestesteeaestesreesbesreessessesssessesseennas 19

D EXAMIPIES ...ttt et e he e b e ae et e be et e e teebeentesteeraenteereenns 19

5.1. SPI—Single SIave EXAMPIE.......cvoiiiieieieciecteeeee ettt ettt te st a et st aesbeernens 19

5.2. SPI—Multiple Slaves EXample CirCUILc.ccvvveierieieieseeeeseeceie e ae e eneens 20

5.3, FT4222 SPI MaSter EXAMPIE.....c.cccuiieieieieceeese ettt ettt ettt ste et ssa e ae e saesreeneens 21

5.4. FT4222 SPI SIaVve EXAMPIEooceieieiieeecteeeee ettt sttt s ve st s ae b s beernens 22

5.5. 12C —Single Slave EXample CIrCUILccoceeiiiiieieiiceese ettt sreeveens 22

5.6, 12C — MUIIPIE SIAVESooveeeeeiieieesteeee ettt ettt re s e besseessesneessesreeneens 23

5.7. FT4222 12C MaSter EXAMPIE.......ccoiiiieieieeteeee ettt sttt st aesreennens 23

5.8. FT4222 12C SIave EXAMPIEooeieieeeee ettt 23

6. SYSLEM REQUITEIMENTS ...ttt sttt b e et e e st e e e seeeaeentesbeeneenesneenes 24
18 To o 1oL (T oo o g T=Tod (0] o < J S 25
LS TS 10 T o o Jo T 0] 01U o] 1S 25

1. Introduction

1.1. Definitions and Acronyms
MPSSE — Multi-Protocol Synchronous Serial Engine
RAM — Random-Access Memory
CS — Chip Select
GPIO — General-Purpose input/output
SPI — Serial Peripheral Interface
CLK — Clock Frequency
MOSI — Master Output, Slave Input
1.2. The Purpose
The purpose of this manual is to outline the basics in configuring the MPSSE for use
and demonstrate some of the available modes of operation.

1.3. Overview
This API provides high-level building blocks to communicate with FTDI Multi-
Protocol Synchronous Serial Engine based on D2XX and FT4222H drivers.

The API enables users to write applications and communicate with the FTDI Chip’s
12C/SPI1/JJTAG/GPIO devices without needing to understand the low-level D2XX and FT4222
drivers and theirs command sets. MPSSE provides a flexible means of interfacing
synchronous serial devices to a USB port. Being “Multi-Protocol”, the MPSSE allows
communication with many different types of synchronous devices; the most popular are SPI
and 12C. Data formatting and clock synchronization can be configured in a variety of ways to
satisfy almost any requirement. In addition to the serial data pins, additional GPIO signals are
available. The API support Windows and NI Linux RT. The Linux version of LibFT4222 has
D2XX built-in.

The FT4222H supports 4 operation modes to allow various 12C/SPI devices to be connected to
USB bus. The attachable device configuration for each mode is listed below:

Mode 0 (2 USB interfaces):

SPI master, SPI slave, 12C master, or 12C slave device

e GPIO device
e Mode 1 (4 USB interfaces):
e SPI master connects up to 3 SPI slave devices

GPIO device

Mode 2 (4 USB interfaces):

SPI master connects up to 4 SPI slave devices

Mode 3 (1 USB interface):

SPI master, SPI slave, 12C master, or 12C slave device

In mode 0 and 3 the connected device can be a SPI/12C master or slave, depending on how an
application developer initializes the FT4222H chip. Mode 1 and mode 2 are designed to
connect to multiple SPI slave devices.

The FT4222H can be configured with up to 4 GPIO pins for user applications in mode 0 and
mode 1, but each pin is multiplexed with interrupt/suspend out/SPI slave select/12C functions
as listed below:

e gpio0/sslo/scl

e gpiol/ss2o0/sda
e gpio2 /ss3o/ suspend out

e gpio3/ wakeup/intr

If the FT4222H is initialized as 12C device, with pins as mentioned above, the pins of gpio0
and gpiol will be switched to scl and sda, and cannot be used as GPIO.

The pin for gpio2 is by default configured as suspend out, and the pin for gpio3 is configured
as wakeup/intr. Only these configured GPIO pins can support GPIO read/set operation
through the corresponding endpoint.

2. Transfer Library and License Files to NI Linux Real-Time
There are many ways of transferring .so and license files to NI Linux RT. For example SSH,
WebDAYV and FileZilla.
The NI Linux Real-Time OS offers full Linux shell support so you can perform complex
administrative tasks to manage real-time targets more easily. To access the shell, you need a
terminal client. If you use Windows 7 and later, then PuTTY is a popular and free client.
In addition to a terminal client, you must select the Enable Secure Shell Server (sshd) option
on the real-time target running the NI Linux Real-Time OS. You can use NI Measurement &
Automation Explorer (MAX).
NI real-time targets support WebDAV file transfer. WebDAV is an industry-standard protocol
that is based on top of HTTP. You can easily secure it to transfer libFT4222.s0 and
FTDI _license.ini files. WebDAYV is the default file transfer mechanism for real-time targets
running NI Linux Real-Time.

After installing package you can find the libFT4222.s0 library in C:\Program Files
(x86)\National Instruments\LabVIEW 2013\vi.lib\Ovak Technologies\FTDI APl for
LabVIEW\Supporting files path. We recommend to transfer these library and
FTDI_license.ini files to /usr/local/lib/ then reboot the controller. For deployment license you
need target's Serial Number.

3. How to use FTDI API for Serial Communication Protocols
FTDI API is installed under “Instrument //O” palette. The palette consists of high-level
MPSSE Polymorphic VIs “D2XX Drivers” and “FT4222H library” sub palette with low-
level Vls for D2XX and FT4222H driver call.

FTDI Driver API for Serial Communication Protocel (SPI, [2C) @
| 4 l Ck."':-vs:arr:h I @\\)Custcumize' |
DEE?'-}'{ER} FTfﬁzzh é; ’ IHSTﬁI.I.E:
i S
D2XX RT_FTDI 4222 SubVls ternp
#
Utility

Figure 1 FTDI Driver API for Serial Communication Protocol (SPI, 12C)

3.1. Open.vi

Use “Open.vi” to configure the FTDI MPSSE for SPI 12C or JTAG protocols.
Just select Device ->Serial Protocol->Connection from Polymorphic drop-down menu.

Note: The MPSSE always acts as a master controller for the selected synchronous
interface.

MFSSE

Az
=Fl |

J Automatic [FT2232H) ||
FT2232H » m Single Slave
FT2232D p [2C » Multiple Slaves
Figure 2 FT2232H_SPI

SPI Mode

C5 pin

Device FFSSE | Handle out

FT22320 Fdk = sz i

LoopBack En.? mﬂ = error out
error in (no error)

Write Timeout
Figure 3 Configure SPI.vi

This VI configures the FTDI MPSSE for SPI protocol. Sets the SPI CLK Frequency, SPI
Mode (only Mod0 and Mod2 are supported) and CS pins for slave device. The MPSSE can

be placed in loop-back mode for diagnostic purposes (data transmitted out of the DO pin,
is also internally connected to the DI pin).

Note: The MPSSE always acts as a master controller for the selected synchronous interface.
C5 pins
SFI Mode
Device HFSSE | Handle out
FT2232D de —{:;:‘uh ;

LDDDBEE‘(En.? Errar ou

error in {no error) mj

Timeout {ms)

Figure 4 SPI - Multi Slaves.vi

This VI configures the FTDI MPSSE for SPI protocol. Sets the SPI CLK Frequency, SPI
Mode (only ModO and Mod2 are supported) and CS pins for slave devices. The MPSSE can
be placed in loop-back mode for diagnostic purposes (data is transmitted out of the DO pin,
is also internally connected to the DI pin).

This VI should be used when multiple slaves are connected to the bus.

12C Slave Adress (7 bit)

Device FFSZE Handle out
FT2232H Folk - +| _:g'“ ;
error in {no error)) == rrar ou
Timeout (ms) g

Figure 5 Configure 12C.vi

This VI configures the FTDI MPSSE for 12C protocol. It sets the 12C CLK Frequency.
Registers the 12C Slave Device Address (7-bit address) interconnected to the bus.

12C Adresses

Device HESSE Handle out
FT2232H Folk ‘!I;I;U‘ "
error in {no error) === error ou
Timeout {ms) g

Figure 6 Configure 12C - Multi Slaves.vi

This VI configures the FTDI Multi-Protocol Synchronous Serial Engine (MPSSE) for 12C
protocol. It sets the 12C CLK Frequency. Registers the 12C Slave Device Address (7-bit
address) interconnected to the bus.

This VI should be used when multiple slaves are connected to the bus.

3.2. Write-Read.vi
Performs Write/Read operations according to serial protocol you specify. The instances of
this polymorphic V1 specify the data format to operate with, as well as a single or multiple
slaves are used on bus topology.

MFSSE
SFI
123

Automatic Byte Data) |

SPI b Sinlge Slave 2 Byte Data
I2C 2 Multiple Slaves p Bit Data

Figure 7 SP1_Single Slave

Bit Oder
Handle FESEE Handle out
Write Data = f;'s L Read Data
error in (no error) =i — b= prror out

Figure 8 SPI_SingleSlave ByteData.vi

This VI performs a full-duplex transfer of data with the slave device. In this case, data
("Write Data" bytes) is both sent to the slave and received from the slave at once.

Bit Qrder
Handle FFSEE Handle out
Write Data = f;'s tnpead Data
error in (no error) =i — b= prror out

Figure 9 SPI_MultipleSlaves_ByteData.vi

This VI performs a full-duplex transfer of data with the slave devices. In this action, data
("Write Data" bytes) is both sent to the slave and received from the slave at once.

This VI should be used when multiple slaves are connected to the bus.

Bite Order
Handle FHEESE Handle out
Bit Data Out =~ I E=Bit Data In
error in (no error) == b= grror out

Figure 10 SPI_MultipleSlaves_BitData.vi

This VI performs a full-duplex transfer of data with the slave devices. In this action, data
("Bit Data Out™ bits) is both sent to the slave and received from the slave at once.

This VI should be used when multiple slaves are connected to the bus.

7

Bit Order

Handle HPSZE Handle out
Bit Data Out E_ﬂr Bit Data In
error in (no error) ==t b= prror gut

Figure 11 SPI_ SingleSlave_BitData.vi

This VI performs a full-duplex transfer of data with the slave device. In this action, data ("Bit
Data Out" bits) is both sent to the slave and received from the slave at once.

This VI should be used when multiple slaves are connected to the bus.

Handle HESSE Handle out
: J [&
Write Data J_ e Read Data
Bytes to Read H — Be=arror out

error in {no error)

Figure 12 12C_MultipleSlaves_ReadWrite.vi

This VI performs Combined Read and Write Operations on Multiple I12C Slave Devices. It
reads “Bytes to Read” amount of data from Slave Devices in a chain and sends “Write Data”
to the each 12C Slave Devices.

This VI should be used when multiple slaves are connected to the bus.

Handle HFSSE Handle out
P - [| .
Write Data)i Read Data
Bytes to Read H — Be= arror out

error in {no error)
Figure 13 12C_SingleSlave_ReadWrite.vi

This VI performs Combined Read and Write Operations on an 12C Slave Device. It reads a
"Bytes to Read" amount of data from the Slave Device. After it sends a "Write Data" to the
I2C Slave Device.

3.3. Close.vi

Use this VI to close opened session.
Handle

MFESE

x
error in (no errar) Al error out

Figure 14 Close.vi

3.4. D2XX Driver
D2XX Driver” palette is composed of a low-level VIs for D2XX driver call.

D2XX B

| 1@ I Q Search I Q% Custornize™ I

FTDI FTDI FTDI FTDI FTDI
L oot oio4 I |

FTDI_Close_... FTDI_Open FTDI_Write FTDI_Read Y1 Tree
» » » EEFROH | »

A7 é)\@ 5= & 4
Action-5Status Advanced Configure EEPROM Ltility

Figure 15 D2XX

4. FT4222H Programming Interface (API)
LibFT4222 supports SPI, 12C and GPIO communication using high-level APIs. In addition, it
provides chip configuration APIs, such as FT4222_SetClock.
After calling FT_Open, the FT4222H is required to be initialized by one of the following initial
functions:

e FT4222 SPIMaster_Init

o FT4222_SPISlave_Init
FT4222_I12CMaster_Init
FT4222_12CSlave_Init

FT4222_GPIO_Init

The initialization functions help developers to switch the FT4222H into a specific mode. At
the end of the application, FT4222_Uninitialize should be called to release allocated resources,
before calling FT_Close. All the APIs return FT4222_STATUS, which extends FT_STATUS
that is defined in the D2XX driver. FT4222 STATUS defines additional values to report
FT4222H specific status.

4.1. FT4222 General Functions
The functions listed in this section are system-wise configuration functions.

4.1.1. Open and Close
An application of LibFT4222 should open the device and get a handle for subsequent accesses
by calling FT_Open or FT_OpenEx. Both are D2XX API. Please note that the FT4222H
assigns different functions to different interfaces. For example, under mode 0, interface A is
assigned as SPI or 12C interface, and interface B is assigned as GPIO interface.
After finishing using the device, FT_Close should be called to release the device.

4.1.2. Un-initialize
Release allocated resources. FT4222_Uninitialize should be called before calling FT_Close.

ftHandle in g 032 FTazze iz 1|ftHandle out
X
error in (no Ern:ur]IIE ¥ ¥=a o | |error out

Figure 16 UnlInitialize

4.1.3. Set Clock
Set the system clock rate. The FT4222H supports 4 clock rates: 80MHz, 60MHz, 48MHz, or
24MHz. By default, the FT4222H runs at 60MHz clock rate.

ftHandle in j 052 :
Clock Rate]l vis E—E%{IHHMIE out

error in (no error) |55k

¥ ||error out

Figure 17 SetClock

4.1.4. Get Clock
Get the current system clock rate.

_ 2 | [ftHandle out
N

ftHandle in g vszk FE:IZZZ w6 ||Clock Rate

error in (no errar]@ = Bz] error out

Figure 18 GetClock

4.1.5. Set Suspend Out
Enable or disable, suspend out, which will emit a signal when FT4222H enters suspend mode.
Please note that the suspend-out pin is not available under mode 2.

-
ftHandle in V52K Fraz Moz]ftHandle out
Enable 1

error in (no errar) |[[(Z=:k -= ¥oat | |error out

Figure 19 SetSuspendOut

4.1.6. Set Wake up/Interrupt
Enable or disable wakeup/interrupt.

ftHandle in
Enable
error in (no error)

LUs2 b

FTares ftHanu:IIe out

¥oa o | (error out

swmok

Figure 20 SetWakeUP/Interrupt

4.1.7. Set Interrupt Trigger Condition
Set trigger condition for the pin wakeup/interrupt.

ftHandle in jLUE2) :
GPIO_Trigger N v b Tﬁ 4@ ftHandle out
error in (no error) (= k - ye=z]lerror out

Figure 21 SetinterruptTrigger

4.1.8. Get Max Transfer Size
This function returns the maximum packet size in a transaction. It will be affected by different
bus speeds, chip modes, and functions.

ftHanu:IIe out
ftHandle in jLU3Z) FTdzzz FIMEKSiIE

mrrrm

error in (no Erru:ur]l T ¥Z=o | |error out

Figure 22 GetMaxTransferSize

4.1.9. Set Event Notification
Sets conditions for event notification.
An application can use this function to set up conditions which allow a thread to block until
one of the conditions is met. Typically, an application will create an event, call this function,
and then block on the event. When the conditions are met, the event is set, and the application
thread is unblocked. Usually, the event is set to notify the application to check the condition.
The application needs to check the condition again before it turns to handle the condition.

10

4.2.

e
ftHandle in LUSZ FTdziz FtHanu:IIe out
mask |[[UsZ}
error in (no error) |55k ¥Zas | |error out

Figure 23 SetEventNotification

SPI Master Functions

The FT4222H can be initialized as an SPI master under all modes.
As SPI master, it allows data transfers in three types of bit width:

Single SPI transfer — Standard data transfer format — data is read and written
simultaneously.

DUAL SPI Transfer/Receive — Data is transferred out or received in on 2 SPI lines
simultaneously.

QUAD SPI Transfer/Receive — Data is transferred out or received in on 4 SPI lines
simultaneously.

4.2.1. SPI Master Init
Initialize the FT4222H as an SP1 master.
In order to support various types of SPI slave devices, the FT4222H SPI master is configurable
using the following parameters:

IO lines: SPI transmission lines. The FT4222H SPI supports single, dual, or quad
transmission mode. An application may override this initial selection dynamically using
FT4222 SPIMaster_SetLines. For example, commands might be sent in single mode
but data transferred in dual or quad mode.

Clock divider: SPI clock rate is subject to system clock. The FT4222H SPI clock could
be 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, or 1/512 system clock rate.

Clock polarity: Active high or active low.

Clock phase: Data is sampled on the leading (first) or trailing (second) clock edge.

Slave selection output pins: Select slave devices by ssOo, sslo, ss20, ss30. The FT4222H
supports active low only.

Please note that the FT4222H has only one SPI controller. Though the FT4222H provides up
to 4 interfaces for connecting up to 4 SPI slave devices and 4 slave devices share the same SPI
data bus: MOSI, MISO, and SCK. A user can decide how to map the 4 interfaces to the 4 SS
signals (ss00, ssl10, ss20 and ss30) by the ssoMap parameter. For example:

a. interface 0 for ss0o and sslo
b. interface 1 for ss20

c. interface 2 for ss30

d. interface 3 is not used

The 4 interfaces cannot work simultaneously because there is only one data bus.
I,
Luszé
Luick
LUick
error in (no error) [[525r
Luick

SPIMode
ftHandle in
SPIClock
SPICPOL

SPICPHA
ssoMap

Taziz FtHanu:IIe aut

He -

¥oas | |error out

Figure 24 SPIMasterlInit

11

4.2.2. SPI Master Set Lines
Switch the FT4222H SPI master to single, dual, or quad mode. This overrides the mode passed
to FT4222_SPIMaster_init. This might be needed if a device accepts commands in single mode

but data transfer should use dual or quad mode.

S5PIMode | U6 FTﬁzz error out
error in (no error) (St ¥ Foan]

Figure 25 SPIMasterSetLines

4.2.3. SPI Master Single Read
Under SPI single mode, read data from SPI slave.

Bz |ftHandle out
ftHandle in jLU3=¢ sizeOfRead out
bufferSize |Cviek F;;j 4||_— Eus] |buffer out
error in (no error) |[LZ2tk 7ot |error out

Figure 26 SPIMasterSingleRread

4.2.4. SPl Master Single Write
Under SPI single mode, write data to SPI slave.
ftHandle in U5z ¥ — ,—ftHanu:IIe out
buffer|[usk ﬁ —HE] |sizeTransferred out
error in (no error) |[(S=t k ¥oas | |error out
isEndTransaction

Figure 27 SPIMasterSingleWrite

4.2.5. SPI Master Single Read and Write
Under SPI single mode, full-duplex write data to and read data from SPI slave. The standard
SPI protocol simultaneously sends data onto the MOSI data line and receives data from the

MISO line.

ftHandle in T032¢ Rium2]|ftHandle out
buffersize [U16) Lmzz JJi sizeTransferred out
writeBuffer o o1 kus] readBuffer out
error in (no error) |[[S=5 ¥ & ¥t | |error out

Figure 28 SPIMasterSingleReadWrite

isEndTransaction

12

4.2.6. SPI Master Multi Read and Write

Under SPI dual or quad mode, write data to and read data from SPI slave. The dual-SPI protocol
supported by the FT4222H SPI master is a mixed protocol initiated with a single write
transmission, which may be an SPI command and dummy cycles, and followed by dual-write
and dual-read transmission that use 2 signals in parallel for the data. All three parts of the
protocol are optional. For example, developers can ignore the multi-read part by setting
multiReadBytes=0.

The Quad-SPI protocol supported by the FT4222H SPI master is the same as the dual-protocol.
It is a mixed protocol initiated with a single write transmission and followed by quad-write and
quad-read transmission that use 4 signals in parallel for the data.

writeBuffer L
ftHandle in U2 Rusz|ftHandle out
singleWriteBytes [CUE) Fus] readBuffer
multiWriteBytes [[U1e 535[; —I_r sizeOfRead
error in (no error) (S5 k d ¥Eac|error out
multiReadBytes |[U1E)

Figure 29 SPIMasterMultiReadWrite

4.3. SPI Slave Functions
The FT4222H can be initialized as an SPI slave under mode 0 to mode 3. As SPI slave, the
FT4222H supports only the standard single SPI transfer.
A USB-SPI bridge usually faces the challenge that USB cannot guarantee the throughput for
each endpoint, but SPI requires data transmission at a steady rate. It is highly possible when an
SPI master starts to request data from a USB-SPI slave bridge device, the data has not arrived
from the USB host side yet. In addition, SPI does not have a standard protocol to allow the
master side to check the status of the slave side. The protocol is usually provided by an SPI
slave device on its own, which makes the SPI master device communicate with the slave device
by its specified commands.
The FT4222H and LibFT4222 design have implemented an SPI slave protocol which must be
used to handle the integrity of data transmission.
It starts with Sync word: 0x5A, and followed by a Command field:

4.3.1. SPI Slave Init
Initializes the FT4222H as SPI slave

ftHandle in | U2 K FTdzze |1"tHar1|:|Ie aut
ey
error in (no error) IIE K ¥Eatl|error out

Figure 30 SPISlavelnit

4.3.2. SPI Slave Get Rx Status
Gets number of bytes in the receive queue.

— Bosz]|ftHandle out
ftHandle in [l U321 M :

andle in FT:E:E |—pr5le out
error in (no Erru:-r:ll Sauk t ¥==c | |error out

Figure 31 SPISlavelnit

13

4.3.3. SPI Slave Read
Reads data from the receive queue of the SPI slave device.

Rz 1|ftHandle out
ftHandle in j_ 032 — I_ sizeCfRead out
bufferSize |[uis} e —Eve] |buffer cut
error in (no error) |[[Z=ck ¥Z=o | |error out
Figure 32 SPISlaveRead
4.3.4. SPI Slave Write
Writes data to the transmits queue of the SPI slave device.
ftHandle in [Usz# =z]litHandle out
buffer ﬁ | ———— B]sizeTransferred out
error in (no error) |[[S=x ¥ ¥oat | |error out
Figure 33 SPISlaveWrite
4.4. SPI General Functions
4.4.1. SPI Reset Transaction
Resets the SPI transaction.
inTisaT
ﬂHanSFlE;; E rTj_zz f'tHandle out
errarin (no error) (S0 K IEAH ¥E2T|error out

Figure 34 SPIResetTransaction

4.4.2. SPI Reset
Resets the SPI master or slave device.

ftHandle inll Uzz¥ FTazzz Rz |ftHandle out
4
error in (no error) ||E ¥

¥t | |error out

Figure 35 SPIReset

4.4.3. SPI Set Driving Strength
For the FT4222H SPI, sets the driving strength of clk, io, and sso pins.

ftHandle infu=g
clkStrength M uie §
ioStrength M uie §

error in (no error) [[S: ¥
ssoStregth M uiie ¥

FTdzre ftHanu:IIe out

DRIYING
¥oat | |error out

Figure 36 SPISetDrivingStrength

14

4.5. 12C Master Functions
12C (Inter Integrated Circuit) is a multi-master serial bus invented by Philips. 12C uses two bi-
directional open-drain wires called serial data (SDA) and serial clock (SCL). Common I2C bus
speeds are the 100 kbit/s standard mode (SM), 400 kbit/s fast mode (FM), 1 Mbit/s Fast mode
plus (FM+), and 3.4 Mbit/s High Speed mode (HS)
The FT4222H device can be initialized as either an 12C master or 12C slave under mode 0
and mode 3. Here is a brief overview of FT4222H 12C features:

e Fully compatible to 12C v2.1 and v3 specification.
e 7-bit address support.

e Support 4 speed configurations: 100KHz(SM), 400KHz(FM), 1IMHz(FM+), and
3.4MHz(HS).

e Clock stretching support in both master and slave mode.
4.5.1. 12C Master Init

Initializes the FT4222H as an 12C master with the requested 12C speed.
ftHandle in [l oz28

kbps [osz FTazEE ftHanu:IIe out

de-ne- =
! ¥oat | |error out

errorin (no error) (525 ¢

Figure 37 I2CMasterlnit

4.5.2. 12C Master Read
Reads data from the specified 12C slave device with START and STOP conditions.

ftHandle in fuzd [Fus]|Buffer
Device Address |06k L J—FtHanu:IIE out
BufferSize |16 K iz] SizeTransferred
error in (no error) [[S2Lk &g ==] |error out

Figure 38 I12CMasterRead

4.5.3. 12C Master Write
Writes data to the specified 12C slave device with START and STOP conditions.

ftHandle inj 03E)

Devicefiddress (U168 — J—f'tHanu:Ile out
Buffer Iigf o SizeTransferred
error in (no error) IIE ¥ ¥Z25 | lerror out

Figure 39 I2CMasterWrite

4.5.4. 12C Master Write Extension
Reads data from the specified 12C slave device with the specified 12C condition.

flag
ftHandle in Uz [Fus]|Buffer
DeviceAddress [[UiEH . _,—ftHandIe out
BufferSize [(HE K 120G] SizeTransferred
error in (no error) |2k {¥=25 | error out

Figure 40 I2CMasterReadEx

15

45.5. 12C Master Read Extension
Reads data from the specified 12C slave device with the specified 12C condition.

flag
ftHandle in | UZ2 K [Fus]|Buffer
DeviceAddress [[vi6k L _,—ftHanu:IIe out
BufferSize |[[HEK S] SizeTransferred
error in (no error) |[(S=t kK {225] error out

Figure 41 12CMasterReadEXx

4.5.6. 12C Master GetStatus
Reads the status of the 12C master controller. This can be used to poll a slave until its write-
cycle is complete.

ftHandle in To28 = J— ftHandle out
125 — kU]| ControllerStatus
error in (no error) IIE b —i? 502z] |error out

Figure 42 12CMasterGetStatus

45.7. 12C Master Reset
Resets the 12C master device.
If the 12C bus encounters errors or works abnormally, this function will reset the 12C device.
It is not necessary to call I2CMaster_Init again after calling this reset function.

ftHandle in jLU32) LS K5z ||ftHandle out
error in (no error) IlE k £ o ||error out

Figure 43 I2CMasterReset

4.6. 12C Slave Functions
The FT4222H device can be initialized as an 12C slave under mode 0 and mode 3. It
conforms to v2.1 and v3.0 of the 12C specification and supports all the transmission modes:
Standard, Fast, Fast-plus and High Speed.
When the 12C slave receives data from the 12C bus, it will keep the data in its internal receive
buffer (256 bytes), and then send the data to the USB host through IN packets.
When data is requested by an 12C master, data will be moved from an OUT packet to the
transmit register directly.

4.6.1. 12C Slave Init
Initializes FT4222H as 12C slave.

. p— y
ftHandle inj_03z) G Risz|ftHandle out
error in (no error) IIE ¥ - ¥Z=z | |error out

Figure 44 12CSlavelnit

4.6.2. 12C Slave Get Address
Gets the address of the 12C slave device.

ftHandle inj uz2 T _|— ftHandle out
6| ——#08]| Addr
errer in (no erru:ur]llE ¥ S b5t]|error out

Figure 45 12CSlaveGetAddress

16

4.6.3. 12C Slave Set Address
Sets the address of the 12C slave device.

ftHandle in LU=Z] y
Addr[Cuied Pz 4E ftHandle out
error in (no error) |[S=ck + *at | |error out

Figure 46 12CSlaveSetAddress

4.6.4. 12C Slave Get Rx Status
Gets number of bytes in the receive queue.

. = _,—FtHanl:IIE out
ftHandle in j 032) FTzzz ¥ | pRaSize
error in (no error) IIE ¥ S ¥z |error out
Figure 47 12CSlaveGetRxStatus
4.6.5. 12C Slave Read
Reads data from the buffer of the 12C slave device.
Ri=z ||ftHandle out
ftHandle inj UE2) — _|—| kr3z] |Buffer
Buffersize |[(U16) [_,— SizeTransferred
error in (no error) |[S=ck ac ¥oas | |error out
Figure 48 I12CSlaveRead
4.6.6. 12C Slave Write
Writes data to the buffer of 12C slave device.
ftHandle in [U2} e T P22lftHandle out
. Buffer '2,2#—'— SizeTransferred
error in (no errar) |[[(Z=tk ¥oat | |error out
Figure 49 12CSlaveWrite
4.6.7. 12C Slave Reset
Resets the 12C slave device.
. = .
ftHandle in jLU3Z] FTazzs BiEz|ftHandle out
error in (no error) IlE k £ o ||error out

Figure 50 12CSlaveReset

17

4.7. GPIO Functions
The FT4222H contains 4 GP1O. When the USB GPIO interface is supported, chip mode 0 and
mode 1, LibFT4222 helps application developers to control GPIO directly. However, each
GPIO pin is multiplexed with interrupt/suspend out/SPI slave select/I2C functions as listed
below:

e gpio0/sslo/scl

e gpiol/ss2o0/sda
e gpio2 /ss3o/suspend out

e gpio3 / wakeup/intr

The number of GPIO pins available depends on the mode of the chip. For example, if the
FT4222H is initialized as an 12C device, as shown above, the pins of gpio0 and gpiol will be
switched to scl and sda, and cannot be used as GPIO. If suspend out and remote wakeup are
enabled gpio2 and gpio3 cannot be used as GPI10.

The FT4222H supports GP1O on the second USB interface in mode 0 or on the fourth interface
in mode 2 (Please refer table 2.1 for chip mode and interface).

4.7.1. GPIO Init
Initializes the GPIO interface of the FT4222H.
Please note the GPIO interface is available on the 2nd USB interface in mode O or on the 4th
USB interface in mode 1.

ftHandle in U3 ,
GPIO_Dir[[vieM %4@ ftHandle out

Heny- =
. ¥oa s |(error out

error in (no error) (St k

Figure 51 GPIOInit

4.7.2. GPIO Read
Reads the value from the specified GPIO pin.

ftHandle in [TUs28 Lrreezsm | Bisz)|ftHandle out
GPIO_Portj Ui6} &R0 | Value
error in (no error) |LS25k & b7t |error out
Figure 52 GPIORead
4.7.3. GPIO Write
Writes value to the specified GP1O pin.
ftHandle jLUZZ)
II.'IH
GPIO_Port |_TIER Fldzzz FtHanu:IIE out
bValue e L o
error in (no error) |[[S=ck f *at | |error out

Figure 53 GPIOWrite

18

4.7.4. GPIO Set Input Trigger
Set software trigger conditions on the specified GPIO pin.
This function allows developers to monitor value changes of the GP10 pins. Values that satisfy
the trigger condition will be stored in a queue. For example, if GPIO_TRIGGER_RISING is
set on GP100, and GP100 then changes value from 0 to 1, the event GPIO_TRIGGER_RISING
will be recorded into the queue. Developers can query the queue status by
FT4222 GPIO_GetTriggerStatus, and FT4222_GPIO_ReadTriggerQueue.

ftHandle {LUSZE
GPIO_Port}l uis b
GPIO_Triggerj vi6k
errorin (no error) [[S=: ¥

FTdZEz FtHanu:IIe out
GO

#1 ¥=at | |error out

Figure 54 GP10OSetInputTriggers

4.7.5. GPIO Get Trigger Status
Gets the size of trigger event queue.

ftHandle in (U528 sz]lftHandle out
GPICO_Portj U16) GP{;:-_’_,— Queuesize
error in (no error) [[S=: ¥ $lot ¥oat | |error out

Figure 55 GP10GetTriggerStatus

4.7.6. GPIO Read Trigger Queue
Gets events are recorded in the trigger event queue. Trigger conditions are set by a call to
FT4222_ GPIO_SetinputTrigger. After calling this function, all events will be removed from
the event queue.

ftHandle in {0520 ftHandle out
GPIO_Port [U1E] — _I_ kus] (Buffer
ReadSize[[mE] W_,— SizeofRead

errar in (no error) [tk

¥at | |error out

Figure 56 GPIOReadTriggerQueue

5. Examples

The package installs an example Vs into the Example Finder.

In order to open VIs using the NI Example Finder, please select "Browse according to
Directory Structure™ and navigate to the “Ovak Technologies” folder.

5.1. SPI - Single Slave Example

Figure 57 SPI - Single Slave Example

19

With a single SPI slave device, it is connected with a 1:1 relationship between signals. Some
SPI devices do not have both data in and data out signals. For example an analogue to digital
converter may not have a MOSI data input, and a digital to analogue converter may not have
a MISO data output. The signals on the FTx232D/H chips have internal pull-ups, so they
may be left unconnected if they are not used. The CS signal is used to enable the slave device’s
interface. With only one device, it may be acceptable to tie the chip select to always-active
state.

MPSSE Signal SPl Assignment
Data Out (TDI/DO) OS]
Data In (TDO/D0) MISO
Clock (TCK/CK) SCLK
Chip Selact (TMS/C5) cs
GPICLOD GPICLOD
GPIOLL GPICLL
GPIOLZ GPICLZ
GPIOL3 GPICL3
GPICHD GPICHD
GPICOHL GPICHL
GPIOHZ GPICOH2
SPI Mode foMode 0 GPIOH3 GPIOH3

. Bit Order -MSB -l
CS pin Fe TGS = - o:; GPIOH4 GPIOHA
LoopBack En.? [LTE B vie -_l F‘ea" bata GPIOHS GPIOHS
FTDI Resourse Mame [[USZ1 ; TFE5E HP=SE GPIOHE GPIOHE
FT2232H Felkfl Uic} %* il *
S 4 (9 oot GFIOHT GFIOHT
|5PI - Single Slave (FT2232H) ‘" |SPI - Sinlge Slave (Byte Data) '"

Figure 58 SPI Single Slave Example

“SPI Single Slave” example VI implements a Single Slave SPI bus connection. It
performs a full-duplex transfer of data with the slave device. Data (an array of bytes) is
both sent to the slave and received from the slave at once.

5.2. SPI — Multiple Slaves Example Circuit

MPSSE &P
oo = MICE
D=t MISO
CLK t= SCLK
CSmMS {=C5
GPIOnp—
GPICns—
_ —
&PI-2
= MIOE
MISD
£ SCLK
=G5
—
EPl-3
L= MOEI
——aqMISO
= SCLK
———=C5
L —

Figure 59 SPI - Multiple Slaves Example Circuit

20

Multiple SPI slaves share data in, data out and clock signals; however, each requires a
unique CS signal. Any of the available GPIO signals, in addition to the MPSSE CS signal
can be used as additional chip selects. In this case only one slave device can be active. The
application program must keep track of which SPI slave device is enabled. As with the
single-slave connection, unused DI1O signals can be left unconnected.

MPSSE Signal SPI Assignment

Data Out (TDI/DO) MOS|

Data In (TDO/DI IS0

Modo Data will be read in on the rising edge of SCLK, and data will be Clok (T(CK/C/:;)) oL

ocl
clocked out onthe falling edge of SCLK, Chip Select (TMS/CS) o5
ip Sele
Mod2 Data will be read inon the falling edge of SCLK, and data will clocked GP\E)LEI GPIOLO
out on the rising edge of SCLK GPIOLL GPIOLL
GPIOLZ GPIOL2
Bit Data In GPIOL3 GPIOL3
Bit Data Out |[#:: [GPIOHD GPIOHD
Byte Data Out [[Fa T Byte Data In GPIOH1 GPIOHL
s GPIOH2 GPIOH2
e GRIOHS GPIOHS
T-"LSB z GPIOHA GRIOHA
FTDI Resource Name [0321 TrsE] FPESE mzm'M'mmJ ”x:LE'm’ ut GPIOHS GPIOHS
a2 "’m‘] 'm" El

FT2232+ Pk *S;H fi TE oot -y GFIOHE GPIOHE
SPI — Multiple Slaves (FT2232H) v SPI - Multiple Slaves (Byte Data) ~| SPI - Multiple Slaves (Bit Data) ~ GPIOHT GPIOHT

Figure 60 SPI Multiple Slaves Example

“SPI Multiple Slaves” example VI implements a Multiple Slave SPI bus connection. It
performs a full-duplex transfer of data with the slave devices. Data is both sent to the slave
and received from the slave at once.

For applications those have uncommon register sizes (not a multiple of 8 bits), “Bit Data”
mode can be selected from “Write-Read.vi” Polymorphic VI’s drop-down menu.

5.3. FT4222 SPI Master Example
Initializes device’s clock, mode, and strengths. Builds buffers, sends to SPI Slave and reads
received buffers and uninitializes.

|:‘ "Process” 't
Creating Buffer with random values, adding header and CheckSum in Buffer and sending to 5P slave
()
Bufersize SYNC_WORD [F5A
[524 cmd g2
SendBuf
sizeTransferred out ASK
16/ ParserSize
128
ftHandle fi}—Cz1 Tz itz =
P 71 oof Fad g o
s"E"I0Pro(ess 'I—w n
stop §
error in (no error) error out
E=) e T

Figure 61 FT4222 SPI Master Example

21

5.4. FT4222 SPI Slave Example
Initializes device. When buffer is received it reads and displays. Then it uninitializes and closes
all references.

["Process” 't
111, Default 't
Current data All receved data
{Evs]f) o m—Evs]
Buffer size

error out

bR

error in (no error)
|IE

Th]

Figure 62 FT4222 SPI slave Example

5.5. 12C - Single Slave Example Circuit

WCC

E

MPSSE |
Do ‘ SDA

I:Il'ﬂiil—I

CLK SCK
C5/TMS
-

Figure 63 12C - Single Slave Example Circuit

I2C is a bidirectional, half-duplex communication scheme. Although the full specification
allows for multiple-masters, the MPSSE can only interface with 12C slave devices. The 12C
interface can be implemented with the connection shown in Figure above In addition, the
application software will need to include steps to change the direction of the MPSSE DO signal
in order to eliminate any bus contention.

Read Data
Adress Eus]
FTDI Resouwrse Namel usrzﬂ HMFEEE [HFEZE} HMFEEE
s — T x. | error out
12¢ Cik e s I8 oo _bpEer]
[12C - Single Slave (FT2232H) ~| [12C - Single Slave (Write Read) ~]
Write Data
Bytes to Read

Figure 64 12C Single Slave Example

“I2C Single Slave” example VI implements a combined write and read operations in a single
slave 12C bus configuration.

22

5.6.

12C — Multiple Slaves

As an extension of the single-slave connection above, multiple 12C slave devices can be
connected in parallel. As before, only 12C slave devices can be used and the MPSSE DO
signal will require changes in direction to eliminate bus contention.

12C Addresses (7 bit) _
FTDI Resource Mame |[[Us2} HFEEE

Ezzmmm ¥=a:] |Read Data
[HFESE |

12C CLK D16} JIIZ?

—||‘*i

[12C —Multiple Slaves (FT2232H) ||

|IZC - Multyple Slaves (Write Read) '"

Write Data | [55 2K
Bytes to Read

Figure 65 12C Multiple Slaves

MFSSE
» error out

oo |

“I2C Single Slave” example VI implements a combined write and read operations in
multiple slaves 12C bus configuration.

5.7,

FT4222 12C Master Example

Opens connection to 12C slave and initializes master. Sends buffer to 12C slave. Reads buffer
from 12C slave, uninitializes and closes connection.

Mo Error 't

|: Na Error 't
|j Mo Error *t

|: No Error "t

Device ID

Buffer Resv

Frdzzz
[E=

error out

______ | X| 4 55

Toaf

ey
Buffer Send

Figure 66 12C Master Example

5.8. FT4222 12C Slave Example
Opens connection port, initializes slave and sets slave address. Get Rx Status for reading
received buffer. Reads received buffer and sends received data to master. Unitializes slave and
close connection.

23

Mo Error Vt

Ja[Default v
Device ID El
___________________ o 7

error in (no error) ¥r32] |Current received buff

F
_____ EINEIF ==
error out

Figure 67 12C Slave Example

6. System Requirements
FTDI API for Serial Communication Protocols has the following system
requirements:

e LabVIEW 2015 Base, Full, or Professional Development System or later (32-bit or
64- bit)

e At least 250 MB of disk space

e 1GBof RAM

FTDI API for Serial Communication Protocols supports the following operating
systems:

Windows 10 (32-bit or 64-bit)

Windows 8 (32-bit or 64-bit)

Windows 7 (32-bit or 64-bit), including the Starter Edition (32-bit)
NI Linux RT

Use of the MPSSE requires installed components, both software and
hardware:

e FTDI FT — series device with the MPSSE — At the time of publication,
FTDI manufactures three devices with the MPSSE block:

o FT2232D — USB 2.0 Full-Speed Dual UART/FIFO with a single MPSSE
(6Mbps, maximum)

o FT2232H — USB 2.0 Hi-Speed Dual UART/FIFO with two MPSSEs
(30Mbps each, maximum)

o FT4232H - USB 2.0 Hi-Speed Quad UART with two MPSSEs (30Mbps
each, maximum)

e FTDI D2XX Device Drivers
o The latest D2XX device drivers are required. Multiple operating

systems are supported.

e See http:/ftdichip.com/Drivers/D2XX.htm for the latest downloads. Installation

guides for various operating systems are available on the FTDI Website.

e FTDI LibFT4222H.
The latest LibFT4222 library are required. Multiple operating systems
are supported.

24

http://ftdichip.com/Drivers/D2XX.htm

e Documentation
o Datasheet for the FTDI FT-series device with the MPSSE
o D2XX Programmers Guide
o AN_108 Command Processor for MPSSE and MCU Host Bus Emulation
Modes

7. Suggested connections
Each type of interface has some unique circuitry requirements. With such a diverse
selection of peripheral devices, not every interface can be covered here. The
implementations below ill serve as a starting point for each popular interfaces.

For the FTDI USB Hi-Speed devices (FT2232H and FT4232H), the I/O interface operates at
3.3V. The pins are 5V-tolerant, so it is possible to directly connect 5V devices to the
interface. For the FTDI USB Full-Speed device (FT2232D), the 1/O interface operates at
the voltage applied to VCCIO.

Note: Care should be taken to review all datasheets for the devices to
ensure 1/O threshold and maximum voltages are met.

8. Support Information
For technical support, please, contact Ovak Technologies at:
Phone: + 374 10 21-97-68

Email: support@ovaktechnologies.com

Web: www.ovaktechnologies.com

25

mailto:support@ovaktechnologies.com
http://www.ovaktechnologies.com/

