)VQA k Wi I

technologies

Database Connectivity Toolkit for Big
Data

User Manual

LabVIEW Layer

C Layer ODBC Layer

SQL Layer

Ovak Technologies
2015

Contents

Lo INEFOTUCTION ..ttt b e bbbttt et s e e bt eb e b nb e s et e e e e enneneas 3
1.1, Definitions and ACTONYIMScceoerierieieieiieiertertess ettt esesb et st st st e et ebesbeseesbe st e s e s e e eneenes 3
O U 0101 RSP 3
1.3. OVEIVIEBW ..ottt bttt b et bbbt b ettt st et b et b s 3

2. Open Database ConNECtiVIty (ODBC)......cccuviriririiieieieieeieniertese ettt 4

3. RegiStering ODBC DIIVELooiiiiiriirieieieeieeeie ettt sttt et be bt sa e s b e nn e neenes 5
3.1. Opening the ODBC Driver MANAGET.........ccereruerieieieiriiereerestesiesteeeeeeeseese e sse s e ssessesneneeneenens 5
3.2. Configuring the default DSN ENIYccuicieiiiiiceceeeeeee ettt aaeeeas 6
T T Ao (o [T g To I WAL= A 1] AN = 1 YRS 7
3.4, Removing an exiSting DSN BNc.ooiviiirireieieieieeese sttt 8

4. ConNecting to & DAtADASEcoeviririeieieiee s 8

5. DAta TYPES MaAPPING . .c.uiiteeiietieteiteeeecte sttt te e ste s e et e be et e tesbeesbeste e s e besasestesbeessessaessebessaensesseensesees 9

6. Working with Date/Time Data TYPES.....coiiieieieeeeteee ettt sttt e sre e besre e 11

7. HaNAliNg NULL VAIUESocueeieieeeete ettt ettt ste et e be s e e ste s esbesteesaenbesrnennenes 11

8. Performing Standard Database OpPerationscoevereereninineneneseee et 11

9. USING STOTEA PIrOCEUUIESc.eeeiiinieieiieiteieeieste sttt ettt sttt ettt be b b st nn et e s e e eseenea 12

10. RUNNING STOrEd PrOCEAUNESovieeeeiieteetesteeee ettt sttt sttt st ere et steenaenbesanenne e 13

11, ATCRITECTUNE ..ottt b ettt ettt b et enes 13

12. D 1 10T 0 -SSR 14

13, EXTOF COUBS LSt....cuiiiiiiiiiiiiieieieie ettt 14

14, SYSEM REQUITEMENTS.cceeieitieierieeeeteseete st et e ste st et e s e eseesbesseessesseessessesseesesseessessesssensessesssenses 15

15. LabVIEW Features and CoNCEPLS USEAccviiuieieiiiiiieiecieceee sttt st 15

16, SUPPOIT INTOIMALION ..c.oiiiiieeeeeee ettt be b e aa e besan et e sreeaaents 15

1. Introduction

1.1. Definitions and Acronyms
SQL — Structured Query Language;

DB — Database;

LV — LabVIEW;

DLL — Dynamic Link Library;

BCD — Binary-coded decimal;

DBMS — Database Management System;
ODBC - Open Database Connectivity;

ADO - ActiveX Data Obijects;

OLE DB - Object Linking and Embedding database;
CLI — Command-Line Interface;

DSN — Data Source Name;

MDAC — Microsoft Data Access Components.

1.2. Purpose
This manual contains information about how to use Database Connectivity Toolkit for Big Data
to communicate, create, store, modify, retrieve and manage data in database management system
using Structured Query Language.

The manual requires that you have basic understanding of the LabVIEW environment, your
computer operating system and SQL.

1.3. Overview
Database Connectivity Toolkit for Big Data is a library, which consists of low-level DLL
functions, which you can perform both common database tasks and advanced customized tasks.
Generally, the toolkit consists of Low-level DLL written in C programming language and meant
to establish fast and reliable communication with DBMS using ODBC 3.x API .

The following list describes the main features of the toolkit:

e Works with any database driver that complies with ODBC.

e Maintains a high level of portability. In many cases, you can port an application to another
database by changing the connection information you pass to the “Connect.vi”;

e Converts database column values from native data types to standard ODBC 3.x API data

types.
e Permits the use of SQL statements with all ODBC supported database systems;

e Provides multiuser access to MS SQL databases.

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface

The main advantages of the toolkit are:

e High-performance connectivity for MS SQL Databases;

e Up to 10x fast transactions;

e Developer friendly data formats;

e Recommended for web-based SCADA systems development.

Due to the wide range of databases with which the Database Connectivity Toolkit for Big Data
works, some portability issues remain.
Consider the following issues when choosing your database system:

e Some database systems, particularly, the flat-file databases such as dBase, do not support
floating-point numbers. In cases where floating-point numbers are not supported, the
toolkit converts floating-point numbers to the nearest equivalent, usually binary-coded
decimal, before storing them in the database. Very large or very small floating-point
numbers can pass the upper or lower limits of the precision available for a BCD value.

e Restrictions on column names vary among database systems. For maximum portability,
limit column names to ten uppercase characters without spaces. You might be able to
access longer column, or field, names or names that contain spaces by enclosing the name
in double quotes.

e Some database systems do not support date, time, or date and time data types.

2. Open Database Connectivity (ODBC)
MDAC includes ODBC, OLE DB, and ADO components. ODBC is designed for
maximum interoperability - that is, the ability of a single application to access different database
management systems with the same source code. Database Connectivity Toolkit for Big data call
functions in the ODBC interface, which are implemented in database-specific modules
called drivers. The use of drivers isolates Database Connectivity Toolkit for Big data from
database-specific calls in the same way that printer drivers isolate word processing programs from
printer-specific commands. As drivers are loaded at run time, a user needs only to add a new driver
to access a new DBMS; it is not necessary to recompile or relink the application. Primarily, ODBC
is a specification for a database API. This API is independent of any other DBMS or operating
system. C programming language was used for this toolkit with ODBC API which is language-
independent. The ODBC API is based on the CLI specifications from Open Group and ISO/IEC.
ODBC 3.x fully implements both of these specifications — earlier versions of ODBC were based
on preliminary versions of these specifications but did not fully implement them, but in the ODBC
3.x there are some features commonly needed by developers of screen-based database applications,
such as scrollable cursors. ODBC was created to provide a uniform method of access to different
or heterogeneous DBMSs.
The ODBC architecture consists of four components:
o Application performs processing and calls ODBC functions to submit SQL statements and
retrieve results.
« Driver Manager loads and unloads drivers on behalf of an application, processes ODBC
function calls or passes them to a driver.
e Driver processes ODBC function calls, submits SQL requests to a specific data source,
and returns results to the application. If necessary, the driver modifies an application's
request so that the request conforms to syntax supported by the associated DBMS.

o Data Source consists of the data the user wants to access and its associated operating
system, DBMS, and network platform (if any) used to access the DBMS.
The hierarchy of data interface layers between LabVIEW and a database using ODBC API is
presented in Figure 1.

LabVIEW

C Application

ODBC API

~D. A —
SQL Server

Figure 1 The hierarchy of data interface layers

3. Registering ODBC Driver

3.1. Opening the ODBC Driver Manager

In order to access the registered ODBC driver entries you need to take the following steps:
Note: This configuration is designed for Windows 7.

Click the «Start» button on the Windows task bar;

Select «Control Panely;

Make sure «Category» is selected in «View by» menu;

Selectt «System and Securityy;

Click on «Administrative Toolsy;

Double-click on «Data Sources (ODBC)».

ok~ wbdpE

The dialog box shown in figure 2 should be displayed.

E ODBC Data Source Administrator P

UserDSN | System DSN | File DSN | Drivers | Tracing | Connection Pooling | About |

User Data Sources:

Name Driver Add...
demo SQAL Server

Excel Files Microsoft Excel Driver (*xls, *xlsx, *xlsm, *xIsh)
MS Access Database Microsoft Access Driver (*.mdb, *.accdb)

tempdb SAL Server

TEST_LLS SQL Server

rrd SQL Server

An ODBC User data source stores information about how to connectto the
= } indicated data provider. A User data source is only visible to you, and can
—— only be used on the current machine.

’ oK l l Cancel l [Apply] [Help

Figure 2 ODBC Data Source Administrator

3.2. Configuring the default DSN entry
To configure the default DSN entry for TEST_LLS ODBC you need to make the following steps:

1. Highlight the entry named «TEST_LLS» on one of the DSN tabs («User DSN», «System

DSN» or «File DSN»).

2. Click on «Configurey.

Note: Each tab has its own default entry for RDM. The changes made in entry of one tab will
not affect those in other tabs.

3. The «Microsoft SQL Server DSN Configuration» dialog box will be displayed.

Microsoft SQL Server DSN Configuration Py

This wizard will help you create an ODBC data source thatyou canuse to
connectto SQAL Server.

% What name do you want to use to refer to the data source?
i

2

e

Name: TEST_LLS

How do you wantto describe the data source?

Description: fortest

Which SQL Server do youwantto connectto?

Server. LENOVO-PC\SQLEXPRESS -

| Finsh | Nea> | | cancel | | Help

Figure 3 Microsoft SQL Server DSN Configuration

The «Microsoft SQL Server DSN Configuration» consists of the following items:

1. Data source name — data source name is a unique identifier of the DSN entry. The
default value is « TEST LLS». In order to change the value, type the desired text in the
edit box and click on «Finishy.

2. Description — description is a text of the DSN entry. In order to change the value, type
the desired text in the edit box and click on «Finish».

3. Databases — ODBC Driver requires that one or more default databases will be specified
with ODBC DM. Once it successfully connects to the SQL server, ODBC will open the
specified databases. To add, modify or remove default databases, click on «Databases».
The «Databases Configuration» dialog will be displayed (Figure 3).

4. Options — click on the «Next» button to configure the advanced options, such as the
driver connection type.

3.3. Adding a new DSN entry
To add a new DSN entry for SQL ODBC you need to make the following steps:
1. Highlight the entry named «TEST_LLS» on one of the DSN tabs («User DSNy, «System
DSN” or «File DSN»).
2. Click on «Add».
3. The «Create New Data Source» dialog box will be displayed.

Create New Data Source P

Select a driver for which you wantto setup a data source.

E‘ [MName Version Company
L SQL Server 6.01.7601.17514 Microsoft Ce
—t—— SQL Server Native Client 10.0 2009.1004000.00 Microsoft Ce

SQL Server Native Client 11.0 2011.110.3000.00 Microsoft Ce

< Back Finish | | Cancel

Figure 4 Create New Data Source

Highlight « TEST_LLS» and click «Finish». The «ODBC SQL Setup» dialog box (Figure 3) will
be displayed.
See the Configuring the default DSN Entry” section for details on the options.

3.4. Removing an existing DSN entry
To remove an existing DSN entry for « TEST_LLS» ODBC you need to:
1. Highlight the entry you wish to remove on one of the DSN tabs («User DSN», «System
DSN» or «File DSN»)
2. Click on «Remove». The confirmation dialog will be displayed.

ODBC Administrator

! Are you sure you want to remove the TEST_LLS data source?

Yes ‘ ‘ No

Figure 5 ODBC Administrator

3. Click «Yesy» to remove the selected DSN entry.

4. Connecting to a Database
Before you can access data in the table or execute SQL statements, you must establish a connection
to a database. The Database Connectivity Toolkit for Big Data supports DSN string connection to
a single database or to multiple databases. Use the «Connect.vi» to establish the connection with
a database. It is here when all errors are identified because each DBMS uses different parameters
for the connection and different levels of security. The different standards also use different
methods of connecting to databases. ODBC uses DSN for the connection.

In order to connect to the database via Database Connectivity Toolkit for Big Data the developer
need to specify the following parameter — DSN String.

Connection_String DB_Ref
Tabch B =]
[T 1C0nnect.w

error in (no error) * error out
[Saik _EI 5H

Figure 6 Connect to Database

Some DBMS requires that this parameter should be set in order to connect to the database. You

should be familiar with your DBMS and be aware of how to specify the connection parameter.
4.1. DSNs and Data Source Types

A DSN is the name of the data source, or database, to which you are connecting. The DSN also

contains information about the ODBC driver and other connection attributes including paths,

security information, and read-only status of the database.

There are two main types of DSNs:
1. Machine DSNs are in the system registry and apply to all users of the computer system
or to a single user. DSNs that apply to all users of a computer system are system DSNSs.
DSNs that apply to single users are user DSNSs.
2. File DSNs is a text file with a «.dsn» extension and is accessible to anyone with proper
permissions. File DSNs are not restricted to a single user or computer system. Use the
ODBC Data Source Administrator to create and configure DSNSs.

5. Data Types Mapping
The Database Connectivity Toolkit for Big Data maps the various C language data types to data
types supported by some of the common DBMS. Figure 7 shows which SQL data types the
Database Connectivity Toolkit for Big Data C language DLL supports.

L TYPE_TIME
L TYPE_TIMESTAMP

L TvPE_D&TE

5QL Data Type

joj k=] (] (o] L] [o] (] (o] (o] [o] (o] Lo o) (o] fo] [L] Ko Lo fo] o] Lol (-] o100Me U1

C Data Type
S0L_C_CHAR
SOL_C_WICHAR

SoL_C BIT
S0L_C_MUMERIC
SOL_C_STIMYINT
SOL_C_UTIMYINT
SOL_C_TINYINT
SOL_C_SBIGINT
SOL_C_UBIGINT
S0L_C_SSHORT
SOL_C_USHORT
S0L_C_SHORT
S0L_C_SLOMG
SOL_C_ULONG
S0L_C_LONG
SQL_C_FLOAT

SOL_C DOUBLE
S0L_C_BINARY
SOL_C_TYPE_DATE
SOL_C_TYPE_TIME
S0L_C_TYPE_TIMESTAMP
INTERWAL_C (DATE-TIME)
INTERWAL,_C (YEAR-MONTH)

SOL_C_GUID [

O[O] SOL_BINARY
O[O | SOL_VAREINEGRY
oy [| SOL_LONGWARBINARY
o] 50
(o] [+] 0]

Do ||| S| o] el S| OO | O] INTERVAL_SOL (DATE-TIME]
oo | s0L_GUID

o] o] [E]]
OO0 OO S| 0| O @3] 0|0 | o) INTERVAL_SOL (YEAR-MONTH)

DSOS SO OO S| DS S| SO O 2| O |8) SOL DECIMAL
DSOS SIS S22 S OO OS2 |8] SOL_NUMERIC

ol (o] (o] (][] o] Lo) (o] o] o] o] [+] o] Lol Ee] L] (o] (o] R1 M=)
olololo|olo|ololo|o|o| o] Ol @ OO0 || SQL TINYINT {signed)
olol|o|o|o|o oo o #| O OO0 [] SALTINYINT {unsigned)
olelolo|lolo|olo el ololol olololole |0 SOLSMALLINT (signed]
ololclelc|o|lole|clole|o| elo| ool [SQLSMALLINT (unsigned)
o |C|S| (@O0 |0 0|0 0| OO OO0 | O SQLINTEGER (signed)
clolo|C|@|o| oo oo |S]| SOl e ofo o] SUL INTEGER [unsigned]
oo eS|SOl O e o] oo C|O|0 || SQL_BIGINT (signed)
DSOS SISO O 8|2 2] O[O O Do |O] SQL_BIGINT {unsigned)
O eS| ool S| el oo ol oo |o| SQL_REAL

1 (1 (1 [%] I+1 =] [+] [«] [«]] [] [<] ¥l [s) o] s [53 (e] IS [N)

OO SO SO || DSOS 2|2 O] SAL_DOUBLE

o
o
o

o
L) [l o] [+

o
L

O OO SO O D OSSO OO SO |S O] S{C| O 2|0 |8] SOL VARCHAR

O OO SO O D OSSO DO S| 2SS S| O OO |8] SOL LONGYARCHAR
olojoo|cloo|olo|olo|O|o|olo|o|ol elo] O[OS o) SOL WCHAR
OO OO | OO S| SO O 0 S| 0|0 | O] OO | O @ O] SOL WWARCHAR
OO |S[O|S |2 |D2|SO|D |S| 2|22 22 | O # |O] SO WLONGVARCHAR
o

o
i
oo
o
o
)
) L
) L
&

@ Default Conversion
O Supported Conversion
O Walid only for interval types with just a single field

Figure 7 Data Types

All LabVIEW data types are supported but not necessarily in their native form. For example, bytes
(U8 and 18) and words (U16 and 116) can be treated as longs (132). The binary data type
encompasses any piece of LabVIEW data, such as waveform, cluster, or array data that cannot be
represented natively in the database. Figure 8 lists LabVIEW data types and the data types in the
Database Connectivity Toolkit for Big Data to which they correspond.

Ne LabVIEW data types Database Connectivity
Toolkit for Big Data data
types
1 | 8-bit integers Integer
2 | 16-bit integers Integer
3 | 32-bit integers Integer
4 | 8-bit enum Integer
5 | 16-bitenum Integer
6 | 32-bit enums Integer
7 | 64-bit integers Long
8 | 64-bit enums Long
9 | Single numeric Float
10 | Double numeric Double
11 | Boolean Integer
12 | String Char*
13 | Date/Time string Char*
14 | Time stamp Char*
15 | Path Char*
16 | 1/0 channel Char*
17 | Refnum Integer
18 | Complex numeric Binary
19 | Extended numeric Binary
20 | Picture control Binary
21 | Array Binary
22 | Cluster Struct
23 | Variant Binary
24 | Waveform Binary
25 | Digital waveform Binary
26 | Digital data Binary
27 | WDT Binary
28 | Fixed-point numeric Binary

Database Connectivity Toolkit for Big Data supports refnums, which are ephemeral constructs
whose values are meaningless after usage. If you want to save a refnum in the database table, you
must first type cast the refnum to an integer and then write the integer in the table.

10

6. Working with Date/Time Data Types
Date/time is an important data type for databases. You can use the time stamp data type to represent
date and time in LabVVIEW. Database Connectivity Toolkit for Big Data can convert the LabVIEW
date time type to MS SQL date time type. The main problem with the date/time data type is that
there is no uniformity and each database supports a different format. In other words, when you
select date/time values from a database, they might be returned in a different form depending on
the DBMS.

7. Handling NULL Values
Databases have NULL fields that are empty fields containing no data. Database Connectivity
Toolkit for Big Data treats NULLs as default data, such as an empty string, a zero-value numeric,
or a FALSE Boolean. Therefore, for example, you cannot easily differentiate between a 0.00 value
in a numeric from one that is NULL. When you convert the NULL values in the variant array into
numeric values, the NULLs become 0 values. However, when you convert the variant array into
strings, the NULLs become empty strings.

8. Performing Standard Database Operations
You can use the Database Connectivity Toolkit for Big Data VIs to write data to or read data from
databases, create and delete tables.
Creating or deleting table, writing or reading data are similar with the Database Connectivity
Toolkit for Big Data. You open a connection, execute queries, get database data, and close the
connection when you are finished. Figure 8 shows the block diagram of a VI that create table,
write test information to a database table, read data from a database table and then converts the
data to the appropriate data types in LabVIEW. The connection information is a ODBC connection
string (DSN).
Four databases Vs are represented in Figure 8:

1. Toolkit’s Connect VI

2. Toolkit’s Query VI

3. Toolkit’s GetData VI

4. Toolkit’s Disconnect VI.
LabVIEW data types are converted to the appropriate database data types.

N
{{No Error -H]
Conn_Str Cannectwvi Query.vi | Disconnectvi Simple Error Handler.vi
e -.-...|] 7
l_“) L0 E = D
(A o FirstName
ICREATE TABLE [dbo].[CUSTOMER] ([CustomerID] [int] NOT NULL, LastName
[FirstName] [varchar](50) NOT NULL, [LastName] [varchar](30) NOT NULL)

INSERT INTO [TEST_LLS].[dbo] [CUSTOMER]
([FirstName],[LastName]) VALUES (FirstName', 'LastName")

SELECT [CustomerID],[FirstName],[LastName]
FROM [TEST_LLS].[dbo].[CUSTOMER]

Figure 8 Standard Database Operations

11

Note: The database data is returned as a one-dimension array of variants (Figure 8).

9. Using Stored Procedures
A stored procedure is a precompiled collection of SQL statements and optional control-of-flow
statements, similar to a macro. Each database and data provider supports stored procedures
differently. For example, you can create a stored procedure using the Jet 4.0 provider, but Access
does not support stored procedures through its usual user interface. A stored procedure created in
one DBMS might not work with another. You can use the Database Connectivity Toolkit for Big
Data to create and run stored procedures, both with and without parameters.
Although using stored procedures is an advanced task, stored procedures offer the following
benefits to your database applications:

e Performance — stored procedures are usually more efficient and faster than regular SQL
queries because SQL statements are analyzed for syntactical accuracy and precompiled by
the DBMS when the stored procedure is created. In addition, combining a large number of
SQL statements with conditional logic and parameters into a stored procedure allows the
procedures to perform queries, make decisions, and return results without extra trips to the
database server.

e Maintainability — stored procedures isolate the lower-level database structure from the
LabVIEW application. As long as the table names, column names, parameter names, and
types do not change from what is stated in the stored procedure, you do not need to modify
the procedure when changes are made to the database schema. Stored procedures are also
a way to support modular SQL programming because after you create a procedure, you and
other users can reuse that procedure without knowing the details of the tables involved.

e Security — when creating tables in a database, the Database Administrator can set
EXECUTE permissions on stored procedures without granting SELECT, INSERT,
UPDATE, and DELETE permissions to users. Therefore, the data in these tables is
protected from users who are not using the stored procedures.

You usually create stored procedures in the DBMS environment. Some DBMSs, such as SQL
Server, contain a library of system-stored procedures that perform common administrative tasks
with databases. For Creating «Stored Procedure» you can use Database Connectivity Toolkit for
Big Data, as shown in Figure 9.

CI:I%n_SU Connectvi Query.vi Disconnectvi Simple Error Handler.vi
abe [= 2]
8 d K

CREATE PROCEDURE [dbo].[TestProcedure] =

@Paraml varchar(50),

@Param2 tinyint,

@Param3 tinyint,

AS

BEGIN

BEGIN TRANSACTION;
INSERT INTO [dbo] .[Test] (Paraml,Param2,Param3)
VALUES(@Paraml,@Paraml,@Paraml);

END

COMMIT TRANSACTION,;

111,

Figure 9 Creating Stored Procedure

12

For creating «Stored Procedurex» the same Vis are used as you to perform a typical SQL query.
However, the syntax of the SQL query string is different. The SQL query string is a stored
procedure.

10.Running Stored Procedures
You can run a stored procedure by inserting the name of the procedure as an SQL query. Stored
procedures can use variables internally as well as pass parameters into and out of the procedure.
You can use parameters with stored procedures in two ways. In the first method, you build SQL
query strings that contain the name of the stored procedure with the values embedded at the
appropriate places in the query.

11.Architecture
The data type Converts are defined in GetData VI, which is included in Database Connectivity
Toolkit for Big Data library. The SQL Connection is defined in DLL, which is included in
Database Connectivity Toolkit for Big Data Library.
Database Connectivity Toolkit for Big Data Library has the following functions:

e Connect.vi — opens connection to SQL use ODBC Connection String (DSN);

e Disconnect.vi — closes connection to SQL;

e GetData.vi — this VI gets data from Database using data reference;

e Query.vi —this VI executes query in SQL database.

e SQL_CONNECTION.dII - this is a DLL, which is written in C programing language. It
contains Connect, Query, GetData and Close functions.

{3 Database Connectivity Toolkit for Big Data.lvlib...l = | (=] |_i:h]

File Edit View Project Operate Tools Window Help

Items | Files

=1 [} Database Connectivity Toolkit for Big Data.lvlib
- [l Connectwi

-l Disconnectvi

- [ml GetData.vi

- Queryvi

“ 4] SOL CONMECTION.dII

Figure 10 Database Connectivity Toolkit for Big Data Library

13

12.Example

Complete the following steps to run this example:

1. Inthe Project Explorer window, open Example.vi.
2. Enter Connection String (DSN) parameter, the query and data types cluster.

3. Click RUN button.

Disconnectvi Simple Error Handler.vi

Connection String Connectvi Query.vi
IIE —— L7
l_“| i _UL_ CustomerID

SELECT [CustomerID],
[FirstName],[LastName]
FROM

[TEST_LLS].[dbo]. [CUSTOMER]

RowCount

ol

FirstName

LastName

Database data

= b 5]

Figure 11 Example Block Diagram.

Connection String

Database data

A
DSN=TempDB;APP=National Instruments ﬂ 0 CustomerID | CustomerlD | CustomerlD

LabVIEW,WSID=LENOVO-PC

| 1 |2 E
FirstName FirstName FirstName

I Per I Tor I Tor
LastName LastName LastName

INiIson IEnison IEnison

Figure 12 Example Front Panel

13.Error Codes List

Ne

Error Code

Description

1

SQL_SUCCESS

Function is completed successfully. The application
calls SQLGetDiagField to retrieve additional
information from the header record (0).

2 | SQL_SUCCESS_WITH_INFO | Function is completed successfully, possibly with a
nonfatal error (warning). The application calls
SQLGetDiagRec or SQLGetDiagField to retrieve
additional information (1).

3 | SQL_ERROR Function is failed. The application calls

SQLGetDiagRec or SQLGetDiagField to retrieve

14

additional information. The contents of any output
arguments to the function are undefined (2).

4 | SQL_INVALID_HANDLE Function is failed due to an invalid environment,
connection, statement, or descriptor handle. This
indicates a programming error. No additional
information is available from SQLGetDiagRec or
SQLGetDiagField. This code is returned only when the
handle is a null pointer or is the wrong type, such as
when a statement handle is passed for an argument that
requires a connection handle (3).

5 | SQL_NO_DATA No more data was available. The application calls
SQLGetDiagRec or SQLGetDiagField to retrieve
additional information (4).

6 | SQL_NEED DATA More data is needed, such as when parameter data is
sent at execution time or additional connection
information is required. The application calls
SQLGetDiagRec or SQLGetDiagField to retrieve
additional information, if any exists (5).

14.System Requirements
LabVIEW Base, Full, or Professional Development System

15.LabVIEW Features and Concepts Used
e (Case structures

o Clusters

e Enums

e Error clusters

e Shift registers

e While Loops

e For Loops

e States

16.Support Information

For technical support, please, contact Ovak Technologies at:
Phone: + 374 (010) 21-97-68

Email: support@ovaktechnologies.com

Web: www.ovaktechnologies.com

15

mailto:support@ovaktechnologies.com
http://www.ovaktechnologies.com/

