
Ovak Technologies

2015

Database Connectivity Toolkit for Big

Data

User Manual

2

Contents
1. Introduction ... 3

1.1. Definitions and Acronyms .. 3

1.2. Purpose .. 3

1.3. Overview ... 3

2. Open Database Connectivity (ODBC) ... 4

3. Registering ODBC Driver .. 5

3.1. Opening the ODBC Driver Manager... 5

3.2. Configuring the default DSN entry ... 6

3.3. Adding a new DSN entry .. 7

3.4. Removing an existing DSN entry .. 8

4. Connecting to a Database ... 8

5. Data Types Mapping ... 9

6. Working with Date/Time Data Types .. 11

7. Handling NULL Values .. 11

8. Performing Standard Database Operations ... 11

9. Using Stored Procedures .. 12

10. Running Stored Procedures ... 13

11. Architecture ... 13

12. Example .. 14

13. Error Codes List .. 14

14. System Requirements .. 15

15. LabVIEW Features and Concepts Used ... 15

16. Support Information ... 15

3

1. Introduction

1.1. Definitions and Acronyms

SQL – Structured Query Language;

DB – Database;

LV – LabVIEW;

DLL – Dynamic Link Library;

BCD – Binary-coded decimal;

DBMS – Database Management System;

ODBC – Open Database Connectivity;

ADO – ActiveX Data Objects;

OLE DB – Object Linking and Embedding database;

CLI – Command-Line Interface;

DSN – Data Source Name;

MDAC – Microsoft Data Access Components.

1.2. Purpose

This manual contains information about how to use Database Connectivity Toolkit for Big Data

to communicate, create, store, modify, retrieve and manage data in database management system

using Structured Query Language.

The manual requires that you have basic understanding of the LabVIEW environment, your

computer operating system and SQL.

1.3. Overview

Database Connectivity Toolkit for Big Data is a library, which consists of low-level DLL

functions, which you can perform both common database tasks and advanced customized tasks.

Generally, the toolkit consists of Low-level DLL written in C programming language and meant

to establish fast and reliable communication with DBMS using ODBC 3.x API .

The following list describes the main features of the toolkit:

 Works with any database driver that complies with ODBC.

 Maintains a high level of portability. In many cases, you can port an application to another

database by changing the connection information you pass to the “Connect.vi”;

 Converts database column values from native data types to standard ODBC 3.x API data

types.

 Permits the use of SQL statements with all ODBC supported database systems;

 Provides multiuser access to MS SQL databases.

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface

4

The main advantages of the toolkit are:

 High-performance connectivity for MS SQL Databases;

 Up to 10x fast transactions;

 Developer friendly data formats;

 Recommended for web-based SCADA systems development.

Due to the wide range of databases with which the Database Connectivity Toolkit for Big Data

works, some portability issues remain.

Consider the following issues when choosing your database system:

 Some database systems, particularly, the flat-file databases such as dBase, do not support

floating-point numbers. In cases where floating-point numbers are not supported, the

toolkit converts floating-point numbers to the nearest equivalent, usually binary-coded

decimal, before storing them in the database. Very large or very small floating-point

numbers can pass the upper or lower limits of the precision available for a BCD value.

 Restrictions on column names vary among database systems. For maximum portability,

limit column names to ten uppercase characters without spaces. You might be able to

access longer column, or field, names or names that contain spaces by enclosing the name

in double quotes.

 Some database systems do not support date, time, or date and time data types.

2. Open Database Connectivity (ODBC)

MDAC includes ODBC, OLE DB, and ADO components. ODBC is designed for

maximum interoperability - that is, the ability of a single application to access different database

management systems with the same source code. Database Connectivity Toolkit for Big data call

functions in the ODBC interface, which are implemented in database-specific modules

called drivers. The use of drivers isolates Database Connectivity Toolkit for Big data from

database-specific calls in the same way that printer drivers isolate word processing programs from

printer-specific commands. As drivers are loaded at run time, a user needs only to add a new driver

to access a new DBMS; it is not necessary to recompile or relink the application. Primarily, ODBC

is a specification for a database API. This API is independent of any other DBMS or operating

system. C programming language was used for this toolkit with ODBC API which is language-

independent. The ODBC API is based on the CLI specifications from Open Group and ISO/IEC.

ODBC 3.x fully implements both of these specifications — earlier versions of ODBC were based

on preliminary versions of these specifications but did not fully implement them, but in the ODBC

3.x there are some features commonly needed by developers of screen-based database applications,

such as scrollable cursors. ODBC was created to provide a uniform method of access to different

or heterogeneous DBMSs.

The ODBC architecture consists of four components:

 Application performs processing and calls ODBC functions to submit SQL statements and

retrieve results.

 Driver Manager loads and unloads drivers on behalf of an application, processes ODBC

function calls or passes them to a driver.

 Driver processes ODBC function calls, submits SQL requests to a specific data source,

and returns results to the application. If necessary, the driver modifies an application's

request so that the request conforms to syntax supported by the associated DBMS.

5

 Data Source consists of the data the user wants to access and its associated operating

system, DBMS, and network platform (if any) used to access the DBMS.

The hierarchy of data interface layers between LabVIEW and a database using ODBC API is

presented in Figure 1.

3. Registering ODBC Driver

3.1. Opening the ODBC Driver Manager

In order to access the registered ODBC driver entries you need to take the following steps:

Note: This configuration is designed for Windows 7.

1. Click the «Start» button on the Windows task bar;

2. Select «Control Panel»;

3. Make sure «Category» is selected in «View by» menu;

4. Selectt «System and Security»;

5. Click on «Administrative Tools»;

6. Double-click on «Data Sources (ODBC)».

LabVIEW

C Application

ODBC API

SQL Server

Figure 1 The hierarchy of data interface layers

6

The dialog box shown in figure 2 should be displayed.

Figure 2 ODBC Data Source Administrator

3.2. Configuring the default DSN entry

To configure the default DSN entry for TEST_LLS ODBC you need to make the following steps:

1. Highlight the entry named «TEST_LLS» on one of the DSN tabs («User DSN», «System

DSN» or «File DSN»).

2. Click on «Configure».

Note: Each tab has its own default entry for RDM. The changes made in entry of one tab will

not affect those in other tabs.

3. The «Microsoft SQL Server DSN Configuration» dialog box will be displayed.

Figure 3 Microsoft SQL Server DSN Configuration

7

The «Microsoft SQL Server DSN Configuration» consists of the following items:

1. Data source name – data source name is a unique identifier of the DSN entry. The

default value is «TEST_LLS». In order to change the value, type the desired text in the

edit box and click on «Finish».

2. Description – description is a text of the DSN entry. In order to change the value, type

the desired text in the edit box and click on «Finish».

3. Databases – ODBC Driver requires that one or more default databases will be specified

with ODBC DM. Once it successfully connects to the SQL server, ODBC will open the

specified databases. To add, modify or remove default databases, click on «Databases».

The «Databases Configuration» dialog will be displayed (Figure 3).

4. Options – click on the «Next» button to configure the advanced options, such as the

driver connection type.

3.3. Adding a new DSN entry

To add a new DSN entry for SQL ODBC you need to make the following steps:

1. Highlight the entry named «TEST_LLS» on one of the DSN tabs («User DSN», «System

DSN” or «File DSN»).

2. Click on «Add».

3. The «Create New Data Source» dialog box will be displayed.

Figure 4 Create New Data Source

Highlight «TEST_LLS» and click «Finish». The «ODBC SQL Setup» dialog box (Figure 3) will

be displayed.

See the Configuring the default DSN Entry” section for details on the options.

8

3.4. Removing an existing DSN entry

To remove an existing DSN entry for «TEST_LLS» ODBC you need to:

1. Highlight the entry you wish to remove on one of the DSN tabs («User DSN», «System

DSN» or «File DSN»)

2. Click on «Remove». The confirmation dialog will be displayed.

Figure 5 ODBC Administrator

3. Click «Yes» to remove the selected DSN entry.

4. Connecting to a Database

Before you can access data in the table or execute SQL statements, you must establish a connection

to a database. The Database Connectivity Toolkit for Big Data supports DSN string connection to

a single database or to multiple databases. Use the «Connect.vi» to establish the connection with

a database. It is here when all errors are identified because each DBMS uses different parameters

for the connection and different levels of security. The different standards also use different

methods of connecting to databases. ODBC uses DSN for the connection.

In order to connect to the database via Database Connectivity Toolkit for Big Data the developer

need to specify the following parameter – DSN String.

Figure 6 Connect to Database

Some DBMS requires that this parameter should be set in order to connect to the database. You

should be familiar with your DBMS and be aware of how to specify the connection parameter.

4.1. DSNs and Data Source Types

A DSN is the name of the data source, or database, to which you are connecting. The DSN also

contains information about the ODBC driver and other connection attributes including paths,

security information, and read-only status of the database.

9

There are two main types of DSNs:

1. Machine DSNs are in the system registry and apply to all users of the computer system

or to a single user. DSNs that apply to all users of a computer system are system DSNs.

DSNs that apply to single users are user DSNs.

2. File DSNs is a text file with a «.dsn» extension and is accessible to anyone with proper

permissions. File DSNs are not restricted to a single user or computer system. Use the

ODBC Data Source Administrator to create and configure DSNs.

5. Data Types Mapping

The Database Connectivity Toolkit for Big Data maps the various C language data types to data

types supported by some of the common DBMS. Figure 7 shows which SQL data types the

Database Connectivity Toolkit for Big Data C language DLL supports.

Figure 7 Data Types

10

All LabVIEW data types are supported but not necessarily in their native form. For example, bytes

(U8 and I8) and words (U16 and I16) can be treated as longs (I32). The binary data type

encompasses any piece of LabVIEW data, such as waveform, cluster, or array data that cannot be

represented natively in the database. Figure 8 lists LabVIEW data types and the data types in the

Database Connectivity Toolkit for Big Data to which they correspond.

№ LabVIEW data types Database Connectivity

Toolkit for Big Data data

types

1 8-bit integers Integer

2 16-bit integers Integer

3 32-bit integers Integer

4 8-bit enum Integer

5 16-bit enum Integer

6 32-bit enums Integer

7 64-bit integers Long

8 64-bit enums Long

9 Single numeric Float

10 Double numeric Double

11 Boolean Integer

12 String Char*

13 Date/Time string Char*

14 Time stamp Char*

15 Path Char*

16 I/O channel Char*

17 Refnum Integer

18 Complex numeric Binary

19 Extended numeric Binary

20 Picture control Binary

21 Array Binary

22 Cluster Struct

23 Variant Binary

24 Waveform Binary

25 Digital waveform Binary

26 Digital data Binary

27 WDT Binary

28 Fixed-point numeric Binary

Database Connectivity Toolkit for Big Data supports refnums, which are ephemeral constructs

whose values are meaningless after usage. If you want to save a refnum in the database table, you

must first type cast the refnum to an integer and then write the integer in the table.

11

6. Working with Date/Time Data Types

Date/time is an important data type for databases. You can use the time stamp data type to represent

date and time in LabVIEW. Database Connectivity Toolkit for Big Data can convert the LabVIEW

date time type to MS SQL date time type. The main problem with the date/time data type is that

there is no uniformity and each database supports a different format. In other words, when you

select date/time values from a database, they might be returned in a different form depending on

the DBMS.

7. Handling NULL Values

Databases have NULL fields that are empty fields containing no data. Database Connectivity

Toolkit for Big Data treats NULLs as default data, such as an empty string, a zero-value numeric,

or a FALSE Boolean. Therefore, for example, you cannot easily differentiate between a 0.00 value

in a numeric from one that is NULL. When you convert the NULL values in the variant array into

numeric values, the NULLs become 0 values. However, when you convert the variant array into

strings, the NULLs become empty strings.

8. Performing Standard Database Operations

You can use the Database Connectivity Toolkit for Big Data VIs to write data to or read data from

databases, create and delete tables.

Creating or deleting table, writing or reading data are similar with the Database Connectivity

Toolkit for Big Data. You open a connection, execute queries, get database data, and close the

connection when you are finished. Figure 8 shows the block diagram of a VI that create table,

write test information to a database table, read data from a database table and then converts the

data to the appropriate data types in LabVIEW. The connection information is a ODBC connection

string (DSN).

Four databases VIs are represented in Figure 8:

1. Toolkit’s Connect VI

2. Toolkit’s Query VI

3. Toolkit’s GetData VI

4. Toolkit’s Disconnect VI.

LabVIEW data types are converted to the appropriate database data types.

Figure 8 Standard Database Operations

12

Note: The database data is returned as a one-dimension array of variants (Figure 8).

9. Using Stored Procedures

A stored procedure is a precompiled collection of SQL statements and optional control-of-flow

statements, similar to a macro. Each database and data provider supports stored procedures

differently. For example, you can create a stored procedure using the Jet 4.0 provider, but Access

does not support stored procedures through its usual user interface. A stored procedure created in

one DBMS might not work with another. You can use the Database Connectivity Toolkit for Big

Data to create and run stored procedures, both with and without parameters.

Although using stored procedures is an advanced task, stored procedures offer the following

benefits to your database applications:

 Performance – stored procedures are usually more efficient and faster than regular SQL

queries because SQL statements are analyzed for syntactical accuracy and precompiled by

the DBMS when the stored procedure is created. In addition, combining a large number of

SQL statements with conditional logic and parameters into a stored procedure allows the

procedures to perform queries, make decisions, and return results without extra trips to the

database server.

 Maintainability – stored procedures isolate the lower-level database structure from the

LabVIEW application. As long as the table names, column names, parameter names, and

types do not change from what is stated in the stored procedure, you do not need to modify

the procedure when changes are made to the database schema. Stored procedures are also

a way to support modular SQL programming because after you create a procedure, you and

other users can reuse that procedure without knowing the details of the tables involved.

 Security – when creating tables in a database, the Database Administrator can set

EXECUTE permissions on stored procedures without granting SELECT, INSERT,

UPDATE, and DELETE permissions to users. Therefore, the data in these tables is

protected from users who are not using the stored procedures.

You usually create stored procedures in the DBMS environment. Some DBMSs, such as SQL

Server, contain a library of system-stored procedures that perform common administrative tasks

with databases. For Creating «Stored Procedure» you can use Database Connectivity Toolkit for

Big Data, as shown in Figure 9.

Figure 9 Creating Stored Procedure

13

For creating «Stored Procedure» the same Vis are used as you to perform a typical SQL query.

However, the syntax of the SQL query string is different. The SQL query string is a stored

procedure.

10. Running Stored Procedures

You can run a stored procedure by inserting the name of the procedure as an SQL query. Stored

procedures can use variables internally as well as pass parameters into and out of the procedure.

You can use parameters with stored procedures in two ways. In the first method, you build SQL

query strings that contain the name of the stored procedure with the values embedded at the

appropriate places in the query.

11. Architecture

The data type Converts are defined in GetData VI, which is included in Database Connectivity

Toolkit for Big Data library. The SQL Connection is defined in DLL, which is included in

Database Connectivity Toolkit for Big Data Library.

Database Connectivity Toolkit for Big Data Library has the following functions:

 Connect.vi – opens connection to SQL use ODBC Connection String (DSN);

 Disconnect.vi – closes connection to SQL;

 GetData.vi – this VI gets data from Database using data reference;

 Query.vi – this VI executes query in SQL database.

 SQL_CONNECTION.dll – this is a DLL, which is written in C programing language. It

contains Connect, Query, GetData and Close functions.

Figure 10 Database Connectivity Toolkit for Big Data Library

14

12. Example

Complete the following steps to run this example:

1. In the Project Explorer window, open Example.vi.

2. Enter Connection String (DSN) parameter, the query and data types cluster.

3. Click RUN button.

Figure 11 Example Block Diagram.

Figure 12 Example Front Panel

13. Error Codes List

№ Error Code Description

1 SQL_SUCCESS Function is completed successfully. The application

calls SQLGetDiagField to retrieve additional

information from the header record (0).

2 SQL_SUCCESS_WITH_INFO Function is completed successfully, possibly with a

nonfatal error (warning). The application calls

SQLGetDiagRec or SQLGetDiagField to retrieve

additional information (1).

3 SQL_ERROR Function is failed. The application calls

SQLGetDiagRec or SQLGetDiagField to retrieve

15

additional information. The contents of any output

arguments to the function are undefined (2).

4 SQL_INVALID_HANDLE Function is failed due to an invalid environment,

connection, statement, or descriptor handle. This

indicates a programming error. No additional

information is available from SQLGetDiagRec or

SQLGetDiagField. This code is returned only when the

handle is a null pointer or is the wrong type, such as

when a statement handle is passed for an argument that

requires a connection handle (3).

5 SQL_NO_DATA No more data was available. The application calls

SQLGetDiagRec or SQLGetDiagField to retrieve

additional information (4).

6 SQL_NEED_DATA More data is needed, such as when parameter data is

sent at execution time or additional connection

information is required. The application calls

SQLGetDiagRec or SQLGetDiagField to retrieve

additional information, if any exists (5).

14. System Requirements

LabVIEW Base, Full, or Professional Development System

15. LabVIEW Features and Concepts Used

 Case structures

 Clusters

 Enums

 Error clusters

 Shift registers

 While Loops

 For Loops

 States

16. Support Information

For technical support, please, contact Ovak Technologies at:

Phone: + 374 (010) 21-97-68

Email: support@ovaktechnologies.com

Web: www.ovaktechnologies.com

mailto:support@ovaktechnologies.com
http://www.ovaktechnologies.com/

